Klasifikasi Kematangan Stroberi Berbasis Segmentasi Warna dengan Metode HSV

  • Intan Sari Areni Departemen Teknik Elektro, Fakultas Teknik, Universitas Hasanuddin
  • Indrabayu Amirullah Departemen Teknik Informatika, Fakultas Teknik, Universitas Hasanuddin
  • Nurhikma Arifin Departemen Teknik Informatika, Fakultas Teknik, Universitas Hasanuddin
Keywords: Pengolahan citra, Stroberi, HSV, SVM

Abstract

Classification of Strawberry Maturity Based on Color Segmentation using HSV Method. Manual fruit maturity classification has many limitations because it is influenced by human subjectivity. Hence, the application of digital image processing and artificial intelligence becomes more effective and efficient. This study aims to create a classification system that automatically divides strawberry maturity into three categories, namely not ripe, half-ripe, and ripe. The process of identifying the level of fruit maturity is based on the color characteristics Red, Green, Blue (RGB) value of the image. The method used for color segmentation is Hue, Saturation, Value (HSV) and for the classification of strawberry maturity using the Multi-Class Support Vector Machine (SVM) algorithm with a Radial Basic Function (RBF) kernel. Strawberry image data was retrieved using the Logitech C920 camera. The dataset consisted of 158 images of strawberries. The results showed that the classification of strawberry maturity using the multi-class SVM algorithm with kernel parameters RBF cost (C) = 10 and gamma (γ) = 10-3 produced the highest accuracy of 97%.

Published
2019-11-30
How to Cite
Areni, I., Amirullah, I., & Arifin, N. (2019, November 30). Klasifikasi Kematangan Stroberi Berbasis Segmentasi Warna dengan Metode HSV. Jurnal Penelitian Enjiniring, 23(2), 113-116. https://doi.org/https://doi.org/10.25042/jpe.112019.03
Section
Articles