

Analysis the Freeboard Effect on a Ferry Ro-Ro Ship Stability Based on the Weather Criteria

Lukman Bochary¹, Mohammad Rizal Firmansyah^{2*}, Syamsul Asri³, Wihdat Djafar⁴, Wahyuddin Mustafa⁵, Rosmani⁶, Muhammad Akbar Asis⁷, Nasaruddin⁸

1,2,3,4,5,6,7,8 Departemen Teknik Perkapalan, Fakultas Teknik, Universitas Hasanuddin, Indonesia

*Corresponding Author: mr.firmansyah@unhas.ac.id

Abstract	Article History:
Weather criteria is one of the IMO standards that must be met before the ship operates. Ferry Ro-Ro ship, which operates in Indonesia, tends to have a small freeboard. The small freeboard affects the stability of the ship. The smaller the freeboard, the arm stability will be smaller as well and vice versa. This research analyzes the stability of a Ferry Ro-Ro ship based on the weather criteria at the design stage. Analysis was conducted by varying KG value with Breadth (B) and Draught (T) or B/T ratio and freeboard (fb) ratio with Breadth (B) or fb/B. The ship models are analyzed using two weather criteria based on IMO recommendations and the characteristics of Indonesian waters. After testing the ship stability based on the weather criteria, the maximum KG value for ship ratio $B/T = 5$ m and the fb/B ratio = 0.04 at 1.0H is 3.456 m. At fb/B ratio = 0.06 on 1.1H of ship height, the maximum KG value is 4.118 m. At fb/B ratio = 0,08, the maximum KG value is 4,435 m at 1.1H, while at fb/B ratio = 0.1, the maximum KG value is 4.752 m at 1.1H.	Received 01 Februari 2023 Revised 05 Maret 2023 Accepted 30 Juni 2023 Available online 30 Juni 2023

Keywords: Ferry Ro-Ro; Freeboard; Weather criteria;

1. Introduction

Ferry Ro-Ro is a ship type designed to transport motored vehicles and passengers from one destination to the other. This ship type has a bow/ramp door for vehicles to get in and out. Generally, Ferry Ro-Ro ships operating in Indonesia are designed and built in an Indonesian shipyard. It was designed with a relatively small ship draught (T) but wide ship breadth (B). These ship characteristics are determined to accommodate its special cargo. Hence, Ferry Ro-Ro ship generally has a big breadth and draught (B/T) ratio. However, this ratio needs to fulfill ship stability criteria. The ship height (H) is relatively small, with many ship openings above the area of the main deck. Besides, it has a small freeboard; hence ship buoyancy reserve is small. These conditions will make seawater easily enter the main deck's area [1],[2]. On the other hand, wind speed in some parts of Indonesian waters is lower than the IMO wind speed standard for determining ship stability criteria [3]. These two differences between Indonesian waters characteristics and Ferry Ro-Ro ship characteristics make the IMO ship stability criteria difficult to be applied to the Indonesian Ferry Ro-Ro ship design.

The main aim of this research is to determine the maximum value of KG (distance between ship keel (K) and center of gravity (G)) for the ship with the ratio of B/T = 5 and the certain ratio of freeboard (fb) against ship Breadth (B) or fb/B which fulfill the IMO weather ship stability criteria.

2. Weather Criteria

2.1 Ship Stability

Stability is the equilibrium of a ship. It represents characteristics or the tendency of a ship to return to its initial position after some force or moment causes a small change in its position. The value of ship stability is the moment resulting from the interaction between ship weight and buoyancy [4], [5]. In general, two forces influence a ship's stability which is: internal factors, referring to the layout of the ship cargo, the ship form specifically in the ship's under-water area and flooding because of grounding or collision and external factors, referring to wind, wave, current and storm [6].

2.2 Energy Balancing Method

The basic principle of weather criteria for ship stability is the balancing energy between inclination moment caused by wave and wind energy (external factor). It makes a ship incline to some degree into portside and heeling moment to return a ship to its initial position. Wave, wind energy, and heeling moment can be represented as an area restricted by the stability arm curve (Figure 1). The value of heeling moment must be at least the same or greater than the wave and wind energy to put the ship in a stable equilibrium.

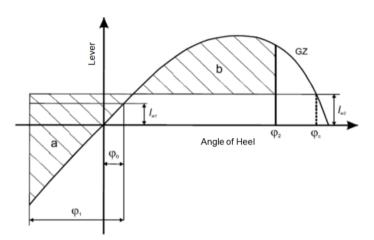


Figure 1. Parameter to evaluate ship stability based on the weather criteria [3]

3. Methods

Data were collected from 4 subjects of the Ferry Ro-Ro ship, as seen in Table 1. The B/T ratio of the ship object is 5 with four variations of fb/B from 0.01, 0.06, 0.08, up to 0.1.

		Table 1.	Data of ship r	nain dimen	sion			
Ship Name	LOA (m)	LWL (m)	LBP (m)	B (m)	H (m)	T (m)	fb/B	Cb
SA_1	55.41	54.77	52.67	14.40	3.46	2.88	0.04	0.61
SA_2	55.72	54.77	52.67	14.40	3.74	2.88	0.06	0.61
SA_3	56.04	54.77	52.67	14.40	4.03	2.88	0.08	0.61
SA_4	56.36	54.77	52.67	14.40	4.32	2.88	1	0.61

Where LOA = Length of Overall, LWL = Length of Water Line, LBP = Length Between Perpendicular, B = Breadth, H = Height, T = Draught, fb = freeboard, and Cb = Coefficient Block.

4. Result and Discussion

4.1 Determination of factor value for inclination angle caused by wave and wind (ϕ_1)

Values of X₁, X₂, k, r and s (Tables 2, 3, 4 and 5) were used to calculate the value of φ_1 . Object ships were assumed to have an inclination caused by waves which form an angle (φ_1) against the wind direction.

	Table 2. Factor value for X_1 and X_2											
Ship Name	B (m)	T (m)	B/T	Cb	\mathbf{X}_{1}	\mathbf{X}_2						
SA_1	14.40	2.88	5	0.61	0.8	0.95						
SA_2	14.40	2.88	5	0.61	0.8	0.95						
SA ₃	14.40	2.88	5	0.61	0.8	0.95						
SA_4	14.40	2.88	5	0.61	0.8	0.95						

Table 2 shows that the relationship between B/T with factor X_1 is constant. On the other hand, the ratio of X_1 for all ship models is relatively the same, which is 0.8. The relationship of Cb with factor X_2 is constant as well. The value of factor X_2 is constant as the block coefficient (Cb) of the ships is the same, which is 0.610, while the value of X_2 for all ship models is relatively the same, which is 0.95.

			Та	ble 3. Fa	actor va	lue for l	ζ.		
Ship Name	LOA (m)	LWL (m)	LBP (m)	В (m)	H (m)	Т (m)	Keel area (Ak)	<u>100xAk</u> LWLxB	k
SA_1	55.41	54.77	52.67	14.40	3.46	2.88	0	0	1
SA_2	55.72	54.77	52.67	14.40	3.74	2.88	0	0	1
SA_3	56.04	54.77	52.67	14.40	4.03	2.88	0	0	1
SA_4	56.36	54.77	52.67	14.40	4.32	2.88	0	0	1

Table 3 shows that the value of k is constant and the same because the average ship sample in this research does not have a keel bar (Equation 1).

$$\frac{Ak x 100}{Lwl x B} = 0 \tag{1}$$

Factor r's value depends on the distance between the ship's centers of gravity (KG) against ship draught (T). Table 4 shows the result of calculating the r-value on B/T ship ratio = 5 and fb/B ratio = 1.

	Ta	nble 4. Fa	ctor valu	e for r		
Ship Name	fb/B	KG	Т	OG	OG/T	r
		2.160	2.88	-0.720	-0.25	0.580
		2.592	2.88	-0.288	-0.10	0.670
		3.024	2.88	0.144	0.05	0.760
S A	0.1	3.456	2.88	0.576	0.20	0.850
SA_1	0.1	3.888	2.88	1.008	0.35	0.940
		4.320	2.88	1.440	0.50	1.030
		4.752	2.88	1.872	0.65	1.120
		5.184	2.88	2.304	0.80	1.210

In Table 4, it can be seen the relationship between OG/T and factor r. The values are relatively linear and tend to increase. The increasing value of r follows the increasing value of OG/T. The last factor that needs to be considered to determine the value of φ_1 is factor s. Factor s depend on the ship inclination period (Ts). Table 5 shows the result of some calculations of value s on ship ratio B/T = 5 and the ratio of fb/B = 0.1.

	Table 5. Factor value for s											
Ship Name	fb/B	KG (m)	B (m)	T (m)	MG (m)	B/T	С	Ts	S			
		2.160	14.4	2.88	6.884	5.0	5.370	5.894	0.1			
		2.592	14.4	2.88	6.452	5.0	5.370	6.089	0.099			
		3.024	14.4	2.88	6.020	5.0	5.370	6.303	0.099			
SA_1	0.1	3.456	14.4	2.88	5.588	5.0	5.370	6.542	0.099			
SA_1	0.1	3.888	14.4	2.88	5.156	5.0	5.370	6.811	0.099			
		4.320	14.4	2.88	4.724	5.0	5.370	7.116	0.098			
		4.752	14.4	2.88	4.292	5.0	5.370	7.465	0.098			
		5.184	14.4	2.88	3.860	5.0	5.370	7.872	0.098			

4.2 Inclination angle caused by wave and wind (φ_1)

Ship inclination angle caused by wave and wind is represented by symbol $\varphi 1$. The inclination angle is the relationship among effective wave slope coefficient (r), factor k, X₁, X₂ and CJR. CJR value or tuning factor is 190 based on the IMO rules. Based on information on the ship's main dimension and factor value of X₁, X₂, k, r and s in Table 1 up to Table 5, the value of φ_1 can be obtained. One sample of the calculation result of φ_1 on the ship sample with B/T = 5 and fb/B = 0.04 can be seen in Table 6.

Table o.	Inclinati	on angle c	caused b	y wave a	na wina (ψ_1) for I	$\mathbf{D}/\mathbf{B} \equiv 0.$.04
Ship Name	fb/B	KG	k	\mathbf{X}_{1}	\mathbf{X}_2	s	r	ϕ_1
		1.728	1.0	0.8	0.954	0.1	0.490	18.415
		2.074	1.0	0.8	0.954	0.1	0.562	19.721
		2.419	1.0	0.8	0.954	0.1	0.634	20.946
SA_4	0.1	2.765	1.0	0.8	0.954	0.099	0.706	21.993
SA_4	0.1	3.110	1.0	0.8	0.954	0.099	0.778	23.078
		3.456	1.0	0.8	0.954	0.099	0.850	24.132
		3.802	1.0	0.8	0.954	0.099	0.922	25.006
		4.147	1.0	0.8	0.954	0.099	0.994	25.964


Table 6. Inclination angle caused by wave and wind (ϕ_1) for fb/B = 0.04

4.3 Analysis of b/a factor for each KG and fb/B variation based on the IMO weather criteria

The b/a factor was analyzed based on the wind speed from 0-30 m/s. KG change was varied from 0.5H up to 1.2H on some fb/B values from 0.04, 0.06, 0.08 and 0.1. Tables 7, 8, 9 and 10 show the result of the b/a calculation up to the maximum KG value on each fb/B variation.

Figure 2 shows the relationship chart between wind speed and b/a factor for fb/B = 0.04 from KG = 0.5H – 1.2H. It can be seen that the increasing wind speeds make the b/a value decrease. Generally, the ship stability test for Indonesian waters is calculated on the wind speed from 0 to 30 m/s because only in this range of wind speed where the b/a area can be fulfilled. In this research, the wind speed parameter used is 26 m/s.

Model	KG	Vwind (m/s)	Wind pressure (Pa)	φ ₁ (deg)	Lw ₁ (m)	Lw ₂ (m)	φ ₀ (deg)	φ Lw ₂ (deg)	$\Phi_{\rm c}$ (deg)	a (m.deg)	b (m.deg)	b/a
		0	0.000	24.132	0.000	0.000	0.000	0.000	43.400	13.845	19.640	1.419
		2	2.982	24.132	0.000	0.001	0.000	0.000	43.300	13.852	19.625	1.417
		4	11.929	24.132	0.002	0.003	0.000	0.000	43.300	13.874	19.579	1.411
		6	26.840	24.132	0.004	0.006	0.000	0.000	43.300	13.909	19.503	1.402
		8	47.716	24.132	0.007	0.011	0.000	0.100	43.200	13.958	19.397	1.390
		10	74.556	24.132	0.011	0.016	0.100	0.100	43.100	14.021	19.261	1.374
		12	107.361	24.132	0.016	0.024	0.100	0.200	43.000	14.098	19.095	1.354
fb/B 0.04	3.456	14	146.130	24.132	0.022	0.032	0.100	0.200	42.800	14.190	18.900	1.332
10/B 0.04	5.450	16	190.864	24.132	0.028	0.042	0.200	0.200	42.700	14.295	18.676	1.306
		18	241.562	24.132	0.036	0.053	0.200	0.300	42.500	14.414	18.423	1.278
		20	298.225	24.132	0.044	0.066	0.300	0.400	42.300	14.546	18.143	1.247
		22	360.852	24.132	0.053	0.080	0.300	0.500	42.100	14.639	17.835	1.214
		24	429.444	24.132	0.063	0.095	0.400	0.600	41.800	14.853	17.500	1.178
		26	504.000	24.132	0.074	0.111	0.400	0.700	41.600	15.027	17.139	1.141
		28	584.521	24.132	0.086	0.129	0.500	0.800	41.300	15.214	16.753	1.101
		30	671.006	24.132	0.099	0.148	0.600	0.900	41.000	15.414	16.342	1.060

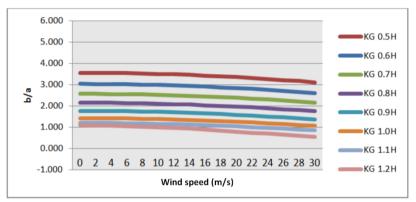


Figure 2. Relationship between wind speed and b/a factor for fb/B = 0.04

IMO recommendation for Ferry Ro-Ro ship requires the b area must be at least the same or greater than the a area [3]. For Ferry Ro-Ro ships with fb/B = 0.04 and KG = 0.5G - 0.9H, the result of the ratio b/a in a ship speed 0- 30 m/s is fulfilled by the weather criteria. The b/a ratio is greater than one and in the range of 1.060 - 3.552. For KG = 1.1H - 1.2H, the ratio of b/a value when the wind speed is more than 26 m/s is less than 1 in the range of 0.930 - 0.637, which means it does not fulfill the weather criteria. For the Ferry Ro-Ro ship with the ratio B/T = 5 and fb/B = 0.04, the KG maximum, which fulfilled the weather criteria, is 1.0H.

Figure 3 shows the relationship between the wind speed and b/a factor with fb/B = 0.06 and KG value from 0.5H - 1.2H. The increasing value of wind speed will make the ratio of b/a to be decreased.

	Table 8. Value of b/a factor for $fb/B = 0.06$ with KG = 1.1H											
Model	KG	Vwind	Wind pressure	ϕ_1	Lw ₁	Lw_2	φ ₀	ϕLw_2	$\Phi_{\rm c}$	а	b	b/a
		m/s	Pa	deg	m	m	deg	deg	deg	m.deg	m.deg	
		0	0.000	26.017	0.000	0.000	0.000	0.000	42.100	17.014	22.465	1.320
		2	2.982	26.017	0.000	0.001	0.000	0.000	42.100	17.022	22.448	1.319
		4	11.929	26.017	0.001	0.002	0.000	0.000	42.000	17.048	22.398	1.314
		6	26.840	26.017	0.003	0.005	0.000	0.000	42.000	17.091	22.314	1.306
		8	47.716	26.017	0.006	0.009	0.000	0.100	41.900	17.152	22.196	1.294
		10	74.556	26.017	0.009	0.014	0.100	0.100	41.900	17.230	22.046	1.280
		12	107.361	26.017	0.013	0.020	0.100	0.200	41.800	17.324	21.862	1.262
fb/B 0.06	4.118	14	146.130	26.017	0.018	0.027	0.100	0.200	41.600	17.436	21.646	1.241
10/ D 0.00	4.118	16	190.864	26.017	0.024	0.035	0.200	0.300	41.500	17.565	21.398	1.218
		18	241.562	26.017	0.030	0.045	0.200	0.300	41.400	17.711	21.118	1.192
		20	298.225	26.017	0.037	0.055	0.300	0.400	41.200	17.874	20.807	1.164
		22	360.852	26.017	0.045	0.067	0.300	0.500	41.000	18.054	20.465	1.134
		24	429.444	26.017	0.053	0.079	0.400	0.600	40.800	18.250	20.094	1.101
		26	504.000	26.017	0.062	0.093	0.500	0.700	40.600	17.463	19.693	1.067
		28	584.521	26.017	0.072	0.108	0.500	0.800	40.300	18.692	19.264	1.031
		30	671.006	26.017	0.083	0.124	0.600	0.900	40.100	18.938	18.808	0.993

For Ferry Ro-Ro ships with fb/B = 0.06 and KG = 0.5G - 1.1H, the result of the ratio b/a in a ship speed 0 - 30 m/s fulfilled the weather criteria. The b/a ratio is greater than one and in the range of 1.031 - 3.647. For KG = 1.2H, the ratio b/a value when the wind speed is more than 26 m/s is less than one, which is 0.919, meaning it does not fulfill the weather criteria. For Ferry Ro-Ro ship with the ratio B/T = 5 and fb/B = 0.06, the KG maximum, which fulfilled the weather criteria, is 1.1H.

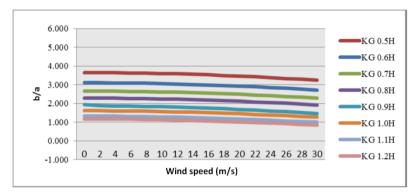
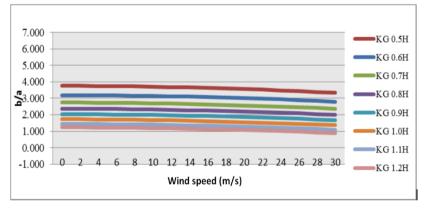



Figure 3. Relationship between wind speed and b/a factor for fb/B = 0.06

Table 9 Value of h/a factor for fh/B = 0.08 with KG = 1.1H

			Table 9. v		a factor	101 10/1	-0.00	with KO	- 1.111			
Model	KG	Vwind	Wind pressure	ϕ_1	Lw_1	Lw_2	ϕ_0	ϕLw_2	$\Phi_{\rm c}$	a	b	b/a
		m/s	Pa	deg	m	m	deg	deg	deg	m.deg	m.deg	
		0	0.000	26.872	0.000	0.000	0.000	0.000	46.300	46.300	29.035	1.439
		2	2.982	26.872	0.000	0.001	0.000	0.000	46.300	46.300	29.014	1.437
		4	11.929	26.872	0.002	0.002	0.000	0.000	46.200	46.200	28.949	1.432
		6	26.840	26.872	0.004	0.005	0.000	0.000	46.200	46.200	28.842	1.423
		8	47.716	26.872	0.006	0.010	0.100	0.100	46.100	46.100	28.692	1.411
		10	74.556	26.872	0.010	0.015	0.100	0.100	46.000	16.000	28.500	1.396
		12	107.361	26.872	0.015	0.022	0.100	0.200	45.900	45.900	28.265	1.377
fb/B 0.08	4.435	14	146.130	26.872	0.020	0.030	0.200	0.300	45.800	45.800	27.989	1.355
10/B 0.08	4.435	16	190.864	26.872	0.026	0.039	0.200	0.300	45.700	45.700	27.672	1.331
		18	241.562	26.872	0.033	0.049	0.300	0.400	45.500	45.500	27.314	1.304
		20	298.225	26.872	0.040	0.061	0.300	0.500	45.400	45.400	26.917	1.274
		22	360.852	26.872	0.049	0.073	0.400	0.600	45.200	45.200	26.480	1.241
		24	429.444	26.872	0.058	0.087	0.500	0.700	44.900	44.900	26.006	1.207
		26	504.000	26.872	0.068	0.102	0.600	0.900	44.700	44.700	25.494	1.170
		28	584.521	26.872	0.079	0.119	0.700	1.100	44.500	44.500	24.945	1.132
		30	671.006	26.872	0.091	0.136	0.800	1.200	44.200	44.200	24.362	1.092

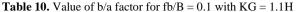


Figure 4. Relationship between wind speed and b/a factor for fb/B = 0.08

Figure 4 shows the relationship between the wind speed and the b/a factor with fb/B = 0.06 and KG value from 0.5H - 1.2H. The increasing value of wind speed will make the ratio of b/a to be decreased.

For Ferry Ro-Ro ships with fb/B = 0.08 and KG = 0.5G - 1.1H, the result of the ratio b/a in a ship speed 0 - 30 m/s fulfilled the weather criteria. The b/a ratio is greater than one and in the range of 1.092 - 3.754. For KG = 1.2H, the ratio b/a value when the wind speed is more than 26 m/s is less than one, which is 0.970 means that it does not fulfill the weather criteria. For Ferry Ro-Ro ship with the ratio B/T = 5 and fb/B = 0.08, the KG maximum, which fulfilled the weather criteria, is 1.1H.

Model	KG	Vwind	Wind pressure	ϕ_1	Lw ₁	Lw ₂	φ ₀	ϕLw_2	$\Phi_{\rm c}$	а	b	b/a
		m/s	Pa	deg	m	m	deg	deg	deg	m.deg	m.deg	
		0	0.000	26.564	0.000	0.000	0.000	0.000	54.200	23.033	40.812	1.772
		2	2.982	26.564	0.000	0.001	0.000	0.000	54.100	23.042	40.785	1.770
		4	11.929	26.564	0.002	0.003	0.000	0.000	54.100	23.069	40.706	1.765
		6	26.840	26.564	0.004	0.006	0.000	0.100	54.100	23.115	40.575	1.755
		8	47.716	26.564	0.007	0.010	0.100	0.100	54.000	23.178	40.390	1.743
		10	74.556	26.564	0.011	0.016	0.100	0.200	53.900	23.259	40.154	1.726
		12	107.361	26.564	0.015	0.023	0.100	0.200	53.800	23359	39.865	1.707
fb/B 0.1	4.32	14	146.130	26.564	0.021	0.031	0.200	0.300	53.700	23.476	39.524	1.684
10/ D 0.1	4.32	16	190.864	26.564	0.027	0.040	0.300	0.400	53.500	23.611	39.132	1.657
		18	241.562	26.564	0.034	0.051	0.300	0.500	53.400	23.763	38.688	1.628
		20	298.225	26.564	0.042	0.063	0.400	0.600	53.200	23.933	38.193	1.596
		22	360.852	26.564	0.051	0.077	0.500	0.700	52.900	24.120	37.647	1.561
		24	429.444	26.564	0.061	0.091	0.600	0.900	52.700	24.324	37.051	1.523
		26	504.000	26.564	0.071	0.107	0.700	1.000	52.500	24.545	36.402	1.483
		28	584.521	26.564	0.083	0.124	0.800	1.200	52.200	24.783	35.709	1.441
		30	671.006	26.564	0.095	0.142	0.900	1.400	51.900	25.037	34.965	1.397

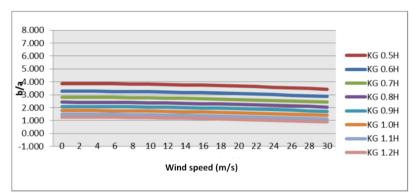


Figure 5. Relationship between wind speed and b/a factor for fb/B = 0.1

Figure 5 shows the relationship between the wind speed and the b/a factor with fb/B = 0.1 and KG value from 0.5H - 1.2H. The increasing value of wind speed will make the ratio of b/a to be decreased.

For Ferry Ro-Ro ships with fb/B = 0.1 and KG = 0.5G - 1.1H, the result of the ratio b/a in a ship speed 0 - 30 m/s is fulfilled the weather criteria. The b/a ratio is greater than one and in the range of 1.118 - 3.864. For KG = 1.2H, the ratio b/a value when the wind speed is more than 26 m/s is less than one, which is 0.984, meaning it does not fulfill the weather criteria. For Ferry Ro-Ro ship with the ratio B/T = 5 and fb/B = 0.1, the KG maximum, which fulfilled the weather criteria, is 1.1H.

4.4 Discussion

Indonesian waters have different characteristics, with the recommendation from IMO to calculate weather criteria of ship stability [1],[7]. The r coefficient (the effective wave slope coefficient) of Indonesian waters is 0.43 + 0.631 (OG/T) with the s function value (wave steepness) is 0.0975, and the wind speed is 16 m/s which is equal to 190.864 Pa. These characteristics are less valuable than IMO requirements for calculating the weather criterion. In the IMO recommendation, the r coefficient is 0.73 + 0.6 (OG/T), the s function value is 0.1, and the wind speed is 26 m/s, equal to 504 Pa (Table 11).

Table 11. The comparison between KG maximum value of IMO and Indonesian waters based on the ship weather criteria of B/T = 5

Shin		IM	IO Reco	mmen	dation		Indon	Indonesian waters			
Ship Name		r	s	P (Pa)	KGmax (m)	r	s	P (Pa)	KGmax (m)		
SA_1	0.04	0.850	0.099	504	3.456	0.084	0.076	190.864	3.802		
SA_2	0.06	0.988	0.098	504	4.118	0.097	0.063	190.864	4.493		
SA_3	0.08	1.054	0.098	504	4.435	0.103	0.056	190.864	4.838		
SA_4	0.1	1.120	0.098	504	4.752	0.110	0.054	190.864	5.184		

Table 11 shows the comparison between the result of the calculation using Indonesian waters characteristics and IMO recommendation. In Indonesian waters, the maximum value of KG is greater than the value according to IMO recommendations. The difference caused by the value of r (effective wave slope

coefficients), s (wave steepness) and wind speed of Indonesian waters is smaller than the value in the IMO recommendation. The increasing value of KG will increase the value of r. Consequently, the ship inclination angle caused by wind and wave (φ 1) will also be increased [8].

The graph in Figure 6 shows that the ship sample with B/T = 5, based on weather criteria of Indonesian waters, fulfilled the requirements to operate with KG value more significantly than the IMO recommendation.

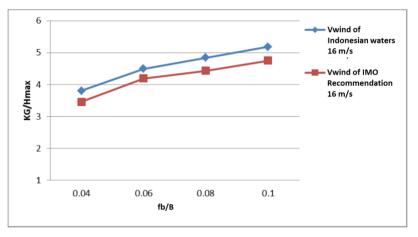


Figure 6. Relationship between fb/B and maximum KG value on weather criteria based on the IMO Recommendation and Indonesian water characteristics

5. Conclusion

Based on the analysis, some conclusions can be drawn to figure out the influence of freeboard and centre of gravity on Ferry Ro-Ro ship stability based on the weather criteria of IMO. Maximum KG for Ferry Ro-Ro ship with B/T = 5 on some fb/B ratio of 0.04, 0.06, 0.08 and 0.1 are increasing from 3.456 m, 4.118 m, 4.435 m, and 4.752 m. Further, on the same fb/B ratio, the KG values that fulfil IMO weather criteria are at 1.0H for fb/B = 0.04 and 1.1H for the rest of the other fb/B ratios.

Reference

- [1] Asri, S., Karakteristik Ukuran Utama Kapal Feri Ro-Ro Produksi Dalam Negeri, Prosiding Hasil Penelitian Fakultas Teknik UNHAS, 2010, Vol. 4, pp. TP 15-1/8.
- [2] Paroka, D., Asri, S., Misliah, Sarna, M.H., Pengaruh Karakteristik Geometri Terhadap Stabilitas Kapal, Prosiding Seminar Nasional Teori dan Aplikasi Teknologi Kelautan, Surabaya, 2012.
- [3] International Maritime Organization, International Code On Intact Stability Resolution MSC.267(85) adopted on Desember 2008, London, 2009.
- [4] Pierrotet, E., A Standard of Stability For Ships, Transaction of the Institution of Naval Architects, 1935.
- [5] Kobylinski, L.K., and Kastner, S., Stability and Safety Of Ships, Elsevier, Oxford, UK, Vol.1, 2003.
- [6] Asri, S., Pallu, M.S., Thaha, M. A., Misliah, Intact Stability Criteria And Its Impact On Design of Indonesia Ro-Ro Ferries. International Journal of engineering Research and Technology (IJERT), 2014, Vol. 3, Issue 3, pp. 1774-1779.
- [7] Ichsan, M.L., Kriteria Stabilitas Kapal Yang beroperasi di Perairan Indonesia, Jurusan Perkapalan Fakultas Teknik Universitas Hasanuddin, Skripsi, 2013.
- [8] Paroka, D., Muhammad, A.H., Asri, S., Maneuverability of ships with small draught in steady wind, Makara journal of technology, 2016, Vol. 20 No. 1, pp. 24-30