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 A modified nonlinear analysis is presented to investigate the 
pullout response of geosynthetic reinforced soil (GRS) walls. 
The analysis conceives a hyperbolic stress-strain relationship 
for the backfill, the kinematics of the failure and the deformation 
compatibility between the soil and the reinforcement. The 
deformation compatibility is incorporated by introducing an 
updated discretization technique, and the true projected length 
of the reinforcement after deformation is evaluated by a simple 
computational scheme. A case study is presented for an 
instrumented full-scale reinforced soil wall to validate the 
present analysis. The maximum tension in the reinforcement at 
each level is computed considering the effect of compaction, 
and the results are compared with the measured values and 
those predicted by AASHTO simplified method. The comparison 
shows that the present analysis gives a better estimation of the 
reinforcement tension thus can be easily integrated with the 
existing method. A parametric study is also conducted mainly to 
determine the effect of stiffness and strength parameters of the 
subgrade which have a significant influence on the design of 
GRS walls against pullout failure for all practical applications. 
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1. Introduction 
 
During the last few decades or so, geosynthetics 

reinforced soil (GRS) structures, such as reinforced soil 
walls (Fig. 1a) and embankments (Figs. 1b-c), have 
emerged as sustainable alternatives to the conventional 
concrete or masonry retaining structures (Damians et al., 
2016; Kargar and Hosseini, 2016; Sowmiya et al., 2015; 
Won et al., 2016). One of the major advantages of these 
structures is inherent flexibility that allows a considerable 
deformation before failure (Ahmad and Choudhury, 2012; 
Desai and El-Hoseiny, 2005; Liu, 2016; Ouria et al., 
2016; Won et al., 2016). At large deformation, the 
subgrade soil and soil-reinforcement interface both 

exhibit a distinctly nonlinear behaviour. However, 
conventional design methods are empirical in nature and 
do not consider the nonlinear behaviour of the subgrade 
and proper soil-reinforcement interface response 
resulting a high level of conservatism in the design (Allen 
and Bathurst, 2013; Liu, 2016; Ouria et al., 2016; Rowe 
and Ho, 1993; Yu et al., 2016). Besides, these methods 
do not consider localized mobilization (Bobet et al., 2007; 
Gao et el., 2014; Gurung et al., 1999; Madhav and 
Umashankar, 2003a-b; MacLaughlin et al., 2001; Patra 
and Shahu, 2015a-b) of reinforcement tension and its 
direction in the vicinity of the failure surface.  

The localized tension mobilized in the reinforcement 
depends on the kinematics of failure (Gao et al., 2014; 
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MacLaughlin et al. 2001; Madhav and Umashankar, 
2003a-b; Patra and Shahu, 2012-2015a-b; Sitar et al., 
2005) that suggests the failure surface intersecting the 
reinforcement obliquely. Thus, the reinforcement is 
subjected to an oblique pullout force P as shown in Fig. 
1(d). Under the action of the oblique pull P, the 
reinforcement undergoes transverse deformation and 
mobilizes additional normal and shear stresses at soil-
reinforcement interface. Consequently, the pullout 
capacity of the reinforcement increases and becomes 
greater than the axial pull. 

 

 
 

Fig. 1. Kinematics of failure of reinforced structures: (a) 
reinforced soil wall; (b) reinforced slope; (c) embankment; and 
(d) enlarged view at X. 
 
 
2. Background 

 
The pullout response under a known value of 

transverse end displacement was first studied by Madhav 
and Umashankar (2003a-b). Since the analysis does not 
consider the overall equilibrium of forces, it is valid only 
for small end displacement (Shahu, 2007-2008). 
Moreover, the proposed model suffers from the inherent 
drawbacks associated with the Winkler spring based 
model that do not consider the interaction between 
neighbouring springs. Consequently, the analysis 
overestimates the magnitude and direction of the 
mobilized localized reinforcement tension (Allen and 
Bathurst, 2013; Gao et al., 2014; Patra and Shahu, 
2015a-b; Patra and Shahu 2014; Sitar et al., 2005) as 
equal to that of the pullout force, which is not true as 
suggested by the experimental findings (Bergado et al., 
2000; Shewbridge and Sitar,1989). 

Patra and Shahu (2012) introduced the effect of the 
subgrade shear stiffness in the pullout analysis by 
assuming a linear elastic Pasternak subgrade. Pasternak 
model (Deb et al., 2007; Madhav and Poorooshasb, 

1988-89; Poorooshasb et al., 1985; Shukla and Chandra 
1994; Tanahashi 2007) based analysis somewhat 
succeeded in removing the existing discrepancies 
between the experimental results and the Winkler based 
model in predicting the localized reinforced soil behaviour.  

The major limitation of the earlier model (Patra and 
Shahu, 2012-2015a-b; Gao et al., 2014; Shahu, 2007-
2008) is the assumption of a constant value of the 
projected length equal to the initial length L of the 
reinforcement along the horizontal direction for 
discretization. However, as the reinforcement undergoes 
transverse deformation, the horizontal component of the 
projected length changes (Figs. 2a-c) and therefore 
should be accounted for in the analysis. The lack of 
corroboration against full-scale reinforced soil walls is 
another major shortcomings. While Patra and Shahu 
(2015a,b) validated their analysis using published small-
scale laboratory model tests data (Lee et al., 1973; Juran 
and Christopher, 1989), till date no effort has been made 
to validate the results with a full-scale reinforced soil wall 
(Allen and Bathurst, 2013; Bathurst et al., 2009) 
conceiving obliquity of the pullout force.  

In practice, the reinforcement may undergo a 
significant deformation particularly in the vicinity of the 
failure surface before the pullout. Thus, the assumption 
of a linear subgrade (Patra and Shahu, 2012-2015a; 
Shahu, 2007) may not be proper as it may yield a 
potentially conservative value of end displacement, 
reinforcement tension, and the factor of safety against 
pullout (Patra and Shahu, 2012). 

In this paper, a modified nonlinear analysis is 
presented to investigate the pullout response of 
geosynthetic reinforced soil (GRS) walls. The analysis 
conceives a nonlinear hyperbolic stress-strain 
relationship for the backfill, kinematics of the failure and 
the deformation compatibility between the soil and the 
reinforcement. The deformation compatibility is 
incorporated by introducing an updated discretization 
technique. The true projected length of the reinforcement 
after deformation, which is essential for the accurate 
estimation of the pullout capacity, is evaluated by a 
simple computational scheme. A case study is presented 
for an instrumented full-scale reinforced soil wall to 
validate the present analysis. The maximum tension in 
the reinforcement at each level is computed considering 
the effect of compaction, and the results are compared 
with the measured values and those predicted by 
AASHTO simplified method. A parametric study is also 
conducted mainly to determine the effect of the 
controlling nonlinear response factors (in shear  and in 
compression  on the pullout capacity.  
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3. Problem defınıtıon and analysıs 
 
An inextensible sheet reinforcement of length L is 

resting on a nonlinear elasto-plastic subgrade at depth D 
(Fig. 2a). The reinforcement is subjected to an oblique 
pull P at point B where the sliding mass intersects the 
reinforcement at an angle to the horizontal (Figs. 1a-d). 
Under the action of the oblique pull P, the mobilized 
maximum tension in the reinforcement is Tmax acting in 
the direction L with the horizontal at end B, where the 
vertical displacement is wL. Figure 2(b) shows the 
proposed model for the analysis and Fig. 2(c) shows the 
forces acting on the deformed reinforcement.  

 

 
 

Fig. 2. Schematic of the model used: (a) reinforcement subject 
to oblique pull; (b) deformed model; and (c) forces on the 
reinforcement. 

 
The reinforcement is assumed as inextensible rough 

membrane. For some reinforcements (like geogrids), and 
for low overburden pressures, this assumption is justified. 
It may be noted that the extensibility of the reinforcement 
in GRS walls is mainly governed by the reinforcement 
stiffness factor J* =J/(2DLetanr) (Shahu and Hayashi 
2009), which in turn depends on reinforcement stiffness J, 
overburden pressureD, the effective length of 
reinforcement Le and soil-reinforcement interface friction 
angle r. For J*>15, the reinforcement exhibits 
inextensible behavior (Shahu and Hayashi 2009).  In the 
present analysis, J* varies from 18 to 56 for the top 
reinforcement where the pullout occurs and thus the 
reinforcement behaves as an inextensible membrane (Liu 
2016).  The underlying soil and the overlying soil (of unit 

weight ) are represented by a nonlinear Pasternak 
model and overburden stress, respectively. 

Nonlinear Pasternak model incorporates the 
hyperbolic stress-strain relationships into the basic 
Pasternak model where the Pasternak model introduces 
a shear interaction between the compressible soil 
elements (springs) by providing a top shear layer (Fig. 
2b). The resulting governing equation is given by (Ghosh 
and Madhav, 1994). 
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where q and p are stresses at the top and bottom of the 
reinforcement (Figs. 3a and b); ks and qult  are the initial 
slopes of the vertical stress-displacement curve and the 
ultimate normal stress of the subgrade (Fig. 3c); G and 
ult are the initial slopes of the shear stress-shear strain 
curve and the ultimate shear stress of the subgrade (Fig. 
3d); H is the thickness of the shear layer (Fig. 3b); and w 
is the vertical displacement at any point x along the 
reinforcement. q is the normal stress on the top of the 
reinforcement resulting from the overburden pressure 
whereas p is the normal stresses acting at the bottom of 
the reinforcement caused by the combined effect of 
overburden q and the stress generated due to the 
downward component of the pullout force. Consequently, 
the total stress p acting at the bottom of the 
reinforcement may be significantly greater than the 
overburden pressure q at the reinforcement level. 

A rigid-plastic behaviour is assumed for soil-
reinforcement interface (Patra and Shahu, 2012). The 
mobilized shear stresses  along the soil-reinforcement 
interface are evaluated as: 

 
bt                                    [2] 

where rct q  tancos ; rcb p  tancos ; q and p 
are normal stresses acting at the top and bottom of the 
reinforcement, respectively; c is an average inclination of 
the reinforcement element with the horizontal and r is 
soil-reinforcement interface friction angle. 

In the proposed model, the final deformed shape of 
the reinforcement is considered for the equilibrium of 
forces as shown in Fig. 2(c). An updated discretization 
technique is adopted in the analysis to account for the 
exact deformed shape of the reinforcement. As the 
reinforcement undergoes a transverse displacement, the 
projected length LH along the horizontal direction also 
changes (Fig. 2c). Thus, in the present analysis, the 
discretization is done at each step over the modified 
length of the reinforcement. 

In the present formulation, the geosynthetics is 
assumed as an inextensible reinforcement hence the 
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total length of the reinforcement is constant. The 
reinforcement changes its shape from initial straight 
horizontal position to a curved shape due to the 
transverse (downward) deformation while keeping the 
total length unchanged. Therefore, the projected 
horizontal length of the reinforcement reduces though the 
total length L of the reinforcement still remains the 
constant. For example, an inextensible reinforcement of 
length L if simply rotated from its horizontal position to an 
angle, say , the horizontal component of the length LH 
will change from the initial LH=L to LH1, where LH1 (= LH cos 
) is always less than the original straight length L. 

 
3.1 Equilibrium of forces on soil-reinforcement element 

 
Figure 3(a) shows a reinforcement element of 

deformed horizontal length x and unit width. The 
reinforcement tensions and inclinations at horizontal 
distances x and (x+x) are T and , and (T+T) and 
(), respectively. 

 
 

 
 

Fig. 3. Stresses on soil-reinforcement element and constitutive 
relationship: (a) stresses on reinforcement element; (b) stresses 
on Pasternak shear layer element; (c) normal stress-
displacement relationship for Winkler springs; and (d) shear 
stress-strain relationship for Pasternak shear layer. 

 
Applying the vertical and the horizontal force 

equilibrium to the final deformed shape of the 
reinforcement element (Fig. 3a) next, substituting (p-q), 
and (t +b) from Eq. (1) and (2), respectively into the 
governing differential equation (Patra and Shahu, 2012) 
and simplifying, one gets 
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Assuming a long reinforcement, the boundary 
conditions are found to be (Fig. 2b): at x = 0 (end A), 
dw/dx= 0 and T = 0; and at x = L (end B), w = wL. Few 
trial analyses were also carried out considering the left-
hand side boundary beyond 5-10 times the length of the 
reinforcement that confirms the current assumption 
dw/dx= 0 at A is correct. 

A finite difference method is then adopted to solve the 
Eqs. (3) and (4). These equations are first normalized as: 
X = x/L, W = w/wL, WL = wL/L, P* = P/THP, T* = T/THP, p* = 
p/D, q* = q/D, Dtt  *   and Dbb  * ; where 

rDLT  tan2HP   is the axial pullout capacity of the 
reinforcement. Next, the forward and central difference 
schemes are used for discretizing the first and second 
order derivative terms, respectively. Finally, simplifying, 
one gets 
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where   21 cicii  ;    iiLci WWnW  
 11tan ; 

 DLks  /  subgrade normal stiffness factor; 
 ults qLk / nonlinear subgrade response factor in 
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vertical compression;  DLGHG* / subgrade shear 
stiffness factor;  ultG  nonlinear subgrade response 
factor in shear;  LwW LL / normalized end 

displacement; Wi and *iT  are normalized displacement 
and reinforcement tension, respectively, at node i; and n 
is the number of elements into which the reinforcement 
strip is divided (i.e., nX /1 ). The boundary conditions 
become 
 
At X = 0, dW/dX = 0 and T* = 0; and at X = 1, W = 1 (7) 

 
3.2 Overall equilibrium of forces 

 
 Applying overall equilibrium of external forces in the 

vertical and horizontal directions to the final deformed 
shape of the reinforcement (Figs. 2c and 3a), next 
normalizing and discretizing the resulting equations into 
the finite difference form and simplifying (Patra and 
Shahu, 2012-2015a,b), one gets 
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where P* = P/2DLtanr = normalized oblique pullout 
capacity. Finally, the obliquity  and the pullout force P* 
can be obtained from the following expressions 
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where   21 cicii  . The horizontal pullout capacity 
*HP  is then evaluated as cos** PPH  LT cos*max ; 

where *maxT  and L = maximum reinforcement tension 
and its direction at node n+1, i.e. * 1*max  nTT  and 

1 nL  ). 
 
3.3 Solution 
 

Solution to the above formulation is obtained by 
determining four sets of unknown variables, namely, Wi, 

*iT , WL and P* from four sets of known equations; i.e. two 
sets of elemental equilibrium equations and, two overall 
equilibrium equations. The elemental equilibrium 
equations (Eqs. 5 and 6) are solved in conjunction with, 
the boundary conditions (Eq. 7) and the overall 
equilibrium equations (Eqs. 8 and 9), to obtain the 
normalized displacement Wi and tension *iT at all nodes, 
the end displacement WL, and the pullout capacity P*. 
The solution involves a trial and error approach and 
requires input parameters e.g. subgrade shear stiffness 
factor G*, subgrade normal stiffness factor , nonlinear 
subgrade response factor in shear , nonlinear subgrade 
response factor in vertical compression,  interface 
frictional resistance r and obliquity of the pullout force. 

 
3.4 Deformation compatibility and updated discretization 

 
The present analysis considers an inextensible 

reinforcement of length L. For inextensible reinforcement, 
the deformed length S (  ds , where ds is the elemental 
length of the deformed reinforcement) should always 
remain constant (i.e., equal to the initial length of the 
reinforcement L). If the reinforcement is subjected to any 
transverse displacement w, it should deform in such a 
manner that the projected horizontal length LH of the 
reinforcement and the discretized length (=LH/n, where n 
is the number of reinforcement element) reduces in order 
to keep the total deformed length a constant (=L).  

The projected horizontal length may be estimated as 
cos dsLH , which is a function of reinforcement slope 

. In general, higher the values of the transverse 
deformation w, higher will be the reinforcement slope 
and lesser will be the LH and the discretized length. 
However, existing methods (Patra and Shahu, 2012-
2015a, 2015b; Gao et al., 2014; Shahu, 2007-2008) 
neglect the deformation compatibility and assumes a 
constant value of the projected length LH (=L) and the 
discretized length which should change with the change 
in the transverse deformation. Consequently, these 
methods result in a higher value of the total deformed 
reinforcement length SecLS H  as compared to the 
true length. As the pullout capacity is a function of 
mobilized interface resistance over the deformed length S, 



264 
S. Patra and J. T. Shahu / Lowland Technology International 2018; 20 (3): 259-272 

the incorrect estimation of the deformed length S leads to 
a gross error in assessing the pullout capacity.  

In the present analysis, the discretization is redone 
with respect to the corrected value of the projected length 
LH, new and it has been obtained iteratively by applying the 
compatibility criteria as 

 

 ci
H

HnewH n
LLLL sec,                [12] 

For each successive iteration, the discretization is 
repeated with respect to the new value of the projected 
length LH, new, i.e., discretized length = LH, new/n. The 
above process is continued until the convergence is 
achieved ( HnewH LL , ). 

 
 

4. Case study of a full scale reınforced soıl wall 
 
In this section, the results of an instrumented full-

scale reinforced soil wall (Bathurst et al., 2009) are 
compared to demonstrate the application of the present 
analysis in the design of reinforced soil walls. Bathurst et 
al. (2009) reported four instrumented walls (Fig. 4) built 
and designed to satisfy National Concrete Masonry 
Association guidelines (NCMA 1996) at Royal Military 
College (RMC). Since the present analysis is valid for 
inextensible reinforcement, Wall No. 6 which was 
reinforced with welded wire mesh (WWM) is considered 
for the comparisons. The wall was constructed with six 
layers of reinforcement with a vertical spacing SV= 0.6 m 
and a target facing batter  = 8° from the vertical (Fig. 4). 
Uniformly graded, naturally deposited rounded beach 
sand was used as backfill. The measured bulk unit weight 
of the backfill material is 17.2 kN/m3 (compacted using 
heavy compaction), and the peak plane-strain friction 
angle  is reported as 44° (Bathurst et al. 2005). 

The maximum reinforcement tensions Tmax at each 
reinforcement level are evaluated, and the results are 
compared with the measured values (Bathurst et al., 
2009), AASHTO (2002) Simplified Method and Patra and 
Shahu (2012). 

According to AASHTO (2002) Simplified Method 
(Bathurst et al., 2009), the maximum reinforcement load 
Tmax is obtained as 

 
Vmax zSKT                                              [13] 

where z is the depth of the reinforcement layer below the 
crest of the wall, the active earth pressure coefficient 

   222 cossin1coscos  K , target facing 
batter from the vertical, and  =  the peak plane-strain 
friction angle of the soil. 

The maximum reinforcement load Tmax can be 
calculated using the proposed analysis as 

V*maxmax zSKTT                                             [14] 
where values of *maxT  may be obtained from the solution 
of equations 5-11 and are shown in Table 1, and all 
others parameters remain same as defined previously. 

Figure 5 shows the variation of maximum 
reinforcement load with the depth of the reinforcement at 
the end of construction for RMC Wall No. 6. The 
measured data (Fig. 5) indicates that the tension in the 
top two layers of reinforcement increases and then 
decreases subsequently. AASHTO (2002) Simplified 
Method, and Patra and Shahu (2012) underpredict the 
reinforcement load as low as 50 % of the measured 
maximum tension for top few reinforcements. However, 
for inextensible reinforcement, the top few reinforcements 
are most critical against the pullout. Thus, the present 
analysis gives a better prediction of the reinforcement 
load as compared to the AASHTO (2002), and Patra and 
Shahu (2012). 

 

 
 

Fig. 4. Schematic diagram of instrumented full-scale reinforced 
soil walls (Bathurst et al. 2009). 
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Fig. 5. Measured maximum reinforcement tension at each 
reinforcement level. 

 
For prediction of reinforcement loads in the wall (Wall 

No. 6), the Reinforcement is assumed as inextensible 
rough membrane and all other required parameters are 
shown in Table 1. In the case of Patra and Shahu (2012), 
the model parameters  and are assumed as equal to 
zero. The effect of heavy compaction is also considered 
by incorporating an equivalent surcharge of 8 kPa in 
addition to the overburden pressure due to the backfill 
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(Huang et al., 2009). A linear failure surface is assumed 
that passes through the toe of the wall making an angle 
= 45+2° with the horizontal (refer FHWA-NHI-00-043, 
Elias et al., 2001). However, the analysis is not only 
applicable to Rankine’s surface (which has been 
assumed here for simplification) but for any failure 
surfaces (e.g. two-part wedge, circular or log spiral). 
 
Table 1. Parameters used for back-prediction of reinforcement 
loads 
Layer i z H0 G*    *maxT  

1 0.3 3.3 1866.8 9469.5 97.7 3221.9 1.36 
2 0.9 2.7 475.3 4132.3 127.9 1002.7 1.19 
3 1.5 2.1 195.8 3611.1 186.3 531.1 1.12 
4 2.1 1.5 89.4 4034.3 291.4 339.5 1.07 
5 2.7 0.9 37.8 5778.4 536.7 239.0 1.04 
6 3.3 0.3 9.4 15530.1 1763.0 178.6 1.02 

Note: H0= Subgrade thickness, Depth=z, (Bathurst, et al., 2009). 
 

4.1 Limitations 
 
Bathurst et al. (2009) measured maximum 

reinforcement tension with depth at the end of 
construction for an instrumented full scale reinforced soil 
wall (Wall No. 6). There is no failure hence Bathurst et al. 
(2009) call this as ‘working stress condition’. The present 
analysis is carried out assuming limit state condition (soil 
is on the verge of failure). Based on the results of the 
analysis, the reinforcement tension is calculated. This is 
not strictly compatible with the working stress method 
and is one of the limitations of the present approach. 
However, it may be noted that the FHWA method (FHWA 
2001) calculates the reinforcement tension using active 
earth pressure assumption which also represents the limit 
state condition (active earth pressure is obtained on the 
verge of soil failure). The researchers have traditionally 
compared this limit state tension in the reinforcement with 
the measured working stress tension. In fact, in this 
paper, the same FHWA equation has been modified by a 
reinforcement tension factor *

maxT  (Eq. 14) and used for 
comparison.  

 
 

5. Parametric study and range of parameters 
 
The results are found to converge for n ≥ 1000, where 

n is the number of discretized elements. Hence, n = 1000 
has been adopted for the present analysis. A parametric 
study is conducted considering the following model 
parameters: subgrade shear stiffness factor 

 DLGHG* / , subgrade normal stiffness factor 
 DLks  / , nonlinear subgrade response factor in 

shear  ultG   , nonlinear subgrade response factor in 
vertical compression  ults qLk / , angle of interface 
frictional resistance r  and obliquity . The effect of the 

above parameters on the pullout responses are 
quantified in terms of horizontal pullout capacity *HP , 
maximum reinforcement tension *maxT , end displacement 
WL and end inclination θL. The results are also compared 
with the linear-elastic model proposed by Patra and 
Shahu (2012).  

The ranges of parameters used in the analysis are: D 
= 1-10 m, L = 1-10 m, modulus of elasticity Es = 10-81 
kPa (corresponding to sand in the loose to dense state), 
Poisson’s ratio v = 0.3, = 15-20 kN/m3; r = 20-45°; qult = 
100-400 kPa,ult = 8.66-200 kPa and = 0-90°. The 
shear layer thickness H (= 0.09-0.54 m), the subgrade 
shear modulus G (= 3,846-31,154 kPa), and the spring 
constant ks (= 2,692-109,038 kN/m3) are determined 
following Patra and Shahu (2012). Based on the above 
parameters and the practical considerations (Patra and 
Shahu, 2012; Shahu, 2007-2008), 500-5000, G* = 0-
1000, =0-3000 and  = 0-2000 are adopted for the 
parametric study. The effect of any particular parameter 
on the soil-reinforcement responses is then studied by 
varying the same against the nominal set: G* = 10, 
=1000, =100, 100, r = 30 and  = 60.  

 
 

6. Localızed reınforced soıl-response 
 

6.1 Effect of nonlinear subgrade response factor in 
shear  

 
For a given value of shear modulus G, a higher value 

of nonlinear subgrade response factor in shear G/ult) 
indicates a lower value of the ultimate failure shear stress 
ult and a highly non-linear response of the subgrade in 
shear. Figs. 6-7 shows the variations of the horizontal 
component of the pullout force *HP , mobilized maximum 
reinforcement tension *maxT , end displacement WL and 
end angle L in response to the changes in nonlinear 
subgrade response factor in shear s  increases, all 
the responses, *HP , *maxT , WL and L increase. However, 
after a particular value of , the above responses reach a 
constant value (Figs. 6-7) since, for higher , full 
mobilization of shear stresses takes place between the 
neighbouring soil elements. The value of  at which all 
these responses becomes constant, increases for higher 
values of G* Figs. 6-7).  

For higher , Pasternak shear layer ceases to 
distribute the vertical component of the pullout force over 
a larger area because of shear failure between the 
neighbouring soil elements, causing a localized 
distribution of the normal stresses at the soil-
reinforcement interface; consequently, the interface 
shear stresses increases. Higher the interface shear 
stresses, higher is the horizontal component of the 
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pullout force *HP (Fig. 6a). A higher value of *HP  
indicates a higher value of the maximum reinforcement 
tension *maxT  (Fig. 6b) and the pullout capacity P*. A 
higher pullout force ultimately results in a higher end-
displacement WL (Fig. 7a) and end angle L (Fig. 7b). 
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Fig. 6. Variation of (a) horizontal pullout capacity factor *HP ; and 

(b) maximum reinforcement tension *maxT  with the nonlinear 
subgrade response factor in shear  (Nominal case: G*=10, 
=1000, 100, r=30°, =60°). 

 
Figure 7(b) shows that the direction L of the 

reinforcement tension at the pullout end sharply 
increases and becomes almost equal to the obliquity of 
the pullout force (i.e. end angle L ≈ ) for the subgrade 
having a lower shear stiffness (lower G*and higher ). On 
the other hand, a stiffer subgrade (higher G* and lower ) 
produces a lower value of the end angle L as compared 
to the obliquity of the pullout force  (Fig. 7b), because, 
displacements, in this case, become more uniform along 
the length of the reinforcement. The above finding is also 
validated experimentally by Bergado et al. (2000) and 
Shewbridge and Sitar (1989). However, the normal 
stiffness  and strength qult of the subgrade have a 
negligible effect on the end angle (Fig. 7b). 

Figures 6-7 also show that as the angle of interface 
friction r increases, all the responses namely, the 

horizontal component of the pullout force *HP , end 
displacement WL and end angle L increases. As the 
angle of interface friction r increases, the soil-
reinforcement interface mobilizes additional shear 
stresses causing a higher reinforcement tension and the 
pullout force (Figs. 6a-b). A higher pullout force gives 
rise to a higher end displacement WL (Fig. 7a) and end 
angle L (Fig. 7b). 
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Fig. 7. Variation of (a) end-displacement WL; and (b) end-angle 
L with the nonlinear subgrade response factor in shear  
(Nominal case: G*=10, =1000, =100, r=30°, =60°). 

 
6.2 Effect of nonlinear subgrade response factor in 

vertical compression  
 
Higher the value of the nonlinear subgrade response 

factor in vertical compression  (= ksL/qult),higher is the 
non-linearity in the subgrade response in vertical 
compression and weaker is the subgrade, i.e., lower is 
the ultimate bearing resistance qult for a given value of 
Winkler’s spring constant ks. Figure 8(a) shows that, as 
nonlinear subgrade response factor in vertical 
compression increases, the horizontal component of 
the pullout capacity *HP  decreases and, the rate of 
decrease is higher at lower values of .  But, after a 
certain value of  *HP  becomes almost constant since 
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the bearing resistance against vertical compression qult is 
fully mobilized. 

 

0.5

1.5

2.5

0 200 400 600 800 1000

H
or

iz
on

ta
l p

ul
lo

ut
 c

ap
ac

ity

G*= 0
= 5000

= 0

r 40 
= 75 

G* = 100

Nonlinear subgrade response factor in vertical compression 

=1000
Nominal

 
* HP

 
(a) 

 

0

1

2

0 200 400 600 800 1000

En
d 

di
sp

la
ce

m
en

t W
L

G*= 0

= 5000

= 0

r = 40 

= 75 

G* = 100

Nonlinear subgrade response factor in vertical compression  

=1000

Nominal

 
(b) 

 
Fig. 8. Variation of (a) horizontal pullout capacity factor *HP ; and 
(b) end-displacement WL with the nonlinear subgrade response 
factor in vertical compression  (Nominal case: G*=10, =1000, 
=100, r=30°, =60°). 

 
As, for higher values of or weaker subgrade), the 

displacements become more uniform and normal 
stresses are distributed over a greater length of the 
reinforcement, the horizontal component of pullout 
capacity *HP decrease (Fig. 8a). On the other hand, 
stronger subgrade (lower values of ) gives rise to a 
higher value of the horizontal pullout capacity *HP  (Fig. 
8a), and the maximum mobilized tension in the 
reinforcement *maxT . Thus, the present analysis endorses 
the current practice of providing a well-compacted 
granular material as backfill (higher qult) for the 
construction of reinforced soil structures to mobilize a 
greater pullout resistance. Again, for a weaker subgrade 
(higher ), the end displacement WL becomes very high 
(Fig. 8b) and may exceed the allowable limit. Thus, for all 
practical applications, the allowable end-displacement 
should also be a guiding factor in determining the design 
pullout capacity. 

 
6.3 Effect of Subgrade shear stiffness factor G* 

 

Figures 9(a-b) show the effect of subgrade shear 
stiffness factor G* on the normalized horizontal 
component of the oblique pullout force *HP and the end-
displacement WL. As G* increases from 0 to 1000, all the 
above responses decrease from a maximum value at G*= 
0.  

Figure 9(a) shows that as the subgrade shear 
stiffness factor G*increases, the horizontal component of 
the oblique pullout force *HP  decreases and, beyond a 
particular value of G*, the value is almost unity (i.e. *HP  
equals the axial pullout capacity). The value of G*, at 
which *HP  becomes a unity, increases with the increase 
in , , r and  A similar trend is also found for the end 
displacement (Fig. 9b) when G* is varied. 
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Fig. 9. Variation of (a) horizontal pullout capacity factor *HP ; 

and (b) end-displacement WL with the subgrade shear stiffness 
factor G* (Nominal case: =1000, =100, =100, r=30°, =60°). 

 
For a particular value of the end-force P, as the 

subgrade shear stiffness G* increases, a higher 
proportion of the load is distributed over the inner part of 
the subgrade by the shear interaction of the neighbouring 
soil elements. Thus, the generation of the normal 
stresses and the interface shear stresses decrease, 
resulting in a reduced value of the mobilized tension in 
the reinforcement. A lower reinforcement tension results 
in a lower value of the pullout capacity (Fig. 9a) and the 
end-displacement (Fig 9b). 
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6.4 Effect of Subgrade normal stiffness factor  
 
Figure 10(a) shows that, as the subgrade normal 

stiffness factor  increases, the horizontal component of 
the oblique pullout force *HP  also increases. However, 
beyond a particular value of , the improvement is almost 
negligible due to the full mobilization of the interface 
shear stresses. The value of , at which *HP  becomes 
virtually constant, increases with the increase in  (a 
weaker subgrade or decrease in the bearing resistance 
qult). Because, for a weaker subgrade (higher ), the 
displacements become more uniform throughout the 
length of the reinforcement thus, mobilizes lesser normal 
and the soil-reinforcement interface shear stresses. 
However, as  increases, the reinforcement exhibits a 
more localized behaviour, giving rise to higher values of 
the interface shear stresses, which ultimately leads to a 
higher value of *HP . However, the end displacement WL 
decreases (Fig. 10b) for higher values of  as the 
subgrade becomes more incompressible in this case. 
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Fig. 10. Variation of (a) horizontal pullout capacity 

factor *HP ; and (b) end-displacement WL with the subgrade 
normal stiffness factor  (Nominal case: G*=10, =100, =100, 
r=30°, =60°). 

 

6.5 Effect of obliquity of the pullout force 
 
Figure 11 shows the effect of the obliquity  on the 

horizontal component of the pullout force *HP . As the 
obliquity  of the pullout force increases, *HP  also 
increases. However, for  >60, the rate of increase in 

*HP  reduces and even the trend is reversed as the value 
of *HP  decreases for few cases, especially for weaker 
subgrade (or higher  The reinforcement in these cases 
bends heavily, causing a reduction in the mobilized 
horizontal component of the soil-reinforcement interface 
shear stresses, which ultimately contributes to the lower 
value of *HP . 
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Fig. 11. Variation of horizontal pullout capacity factor *HP  with 
the obliquity  (Nominal case: G*=10, =1000, =100, =100 
and r=30°). 

 
For a stiffer subgrade (higher G* and lower  i.e.G* 

>100 and  < 100), *HP  remains equal to the axial pullout 
force till a particular value of the obliquity  (refer curve 5, 
Fig. 11) is reached, beyond which, however, a sharp 
increase in the horizontal component of the pullout force 

*HP is observed. A stiffer subgrade also helps to reduce 
the bending of the reinforcement and distributes the 
displacement more uniformly over the length of the 
reinforcement. Since the displacement is distributed 
uniformly, the mobilized tension T* increases linearly 
along the length of the reinforcement as in the case of 
the axial pullout. Consequently, the horizontal capacity of 
the pullout force *HP  equals to the axial pullout capacity. 

A comparison of results between the present analysis 
and that of Patra and Shahu (2012) are shown in Figs. 9-
11. The results suggest that Patra and Shahu (2012) 
gives a highly conservative value of the end 
displacement, the reinforcement tension and the pullout 
capacity (curve A, Fig. 11) which are as low as 0.6 times 
the estimated value of the present analysis (curve B, Fig. 
11). This may be due to the simplified linear elastic ( =0, 
 =0) assumption of the subgrade as proposed by Patra 
and Shahu (2012).  
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7. Conclusıons 
 

A modified nonlinear analysis is presented to 
investigate the pullout response of geosynthetic 
reinforced soil (GRS) walls. The analysis considers a 
hyperbolic stress-strain relation for the backfill, the 
kinematics of the failure and the deformation compatibility 
between the soil and the reinforcement. The deformation 
compatibility is incorporated by introducing an updated 
discretization technique, and the true projected length of 
the reinforcement after deformation is evaluated by a 
simple computational scheme. The application of the 
present analysis is also shown with the example of a 
case study. The following conclusions are drawn: 

• The present analysis is validated against a full-scale 
instrumented reinforced soil wall (Bathurst et al., 2009). 
The reinforcement load at each level was back-predicted 
using the present analysis and considering the effect of 
compaction. The results are also compared with the 
measured data (Bathurst et al., 2009) and AASHTO 
Simplified Method (AASHTO 2002). The comparison 
shows that the present analysis can be easily integrated 
with the existing method of analysis (AASHTO 2002) and 
gives a better estimation of the reinforcement tension at 
the pullout as compared to the AASHTO Simplified 
Method, and Patra and Shahu (2012). Note that Patra 
and Shahu (2012) underestimate the reinforcement 
tension in the top few reinforcements which are critical to 
the pullout failure. 

• The present analysis shows that the reinforcement 
may undergo a significant deformation particularly, in the 
vicinity of the failure surface. However, Patra and Shahu 
(2012) estimated a highly conservative value of the end 
displacement, the reinforcement tension and the pullout 
capacity which may result from the simplified assumption 
of a linear elastic subgrade. 

• For a given value of shear modulus G, a higher 
value of nonlinear subgrade response factor in shear  
(= Gult) indicates a lower value of the ultimate failure 
shear stress ult and a highly non-linear subgrade 
response in shear. As  increases (shear stiffness 
decreases), the horizontal component of the pullout force 
increases. For higher values of lower ult), the shear 
layer ceases to distribute the normal stresses over a 
larger area thus the stresses at the soil-reinforcement 
interface becomes highly localized. Consequently, the 
interface shear stresses and the horizontal component of 
the pullout force increases. However, after a particular 
value of , no significant improvement of *HP  is observed 
as shear stresses between the neighbouring soil 
elements are fully mobilized.  

• For the subgrade soil having a lower shear stiffness 
(lower G* and ), the direction L of the reinforcement 

tension sharply increases at the pullout end and 
becomes almost equal to the obliquity  of the pullout 
force (i.e. end angle L ≈ ). However, a stiffer subgrade 
(higher G* and lower ) gives rise to a lower values of the 
end angle L, as compared to the obliquity of the pullout 
force.  

• For a weaker subgrade (higher ) having lower 
normal and shear stiffness (lower  and G*, and higher ), 
the end displacement WL becomes very high and may 
exceed the allowable limit. Thus, for all practical 
applications, the allowable end-displacement should be 
the guiding factor in determining the design pullout 
capacity for a weaker subgrade. 

• For stiffer subgrade (higher G* and lower ),   
*HP remains equal to the axial pullout force up to a 

particular value of the obliquity of the pullout force. 
However, if the obliquity exceeds this particular value, 
a sharp increase in the horizontal component of the 
pullout force is observed. 

• The parametric study was conducted to quantify the 
effect of the stiffness (higher G* and lower and the 
strength (lower values of  or higher qult) properties of the 
subgrade on the pullout responses. It is found that for all 
practical applications, both the strength, as well as the 
stiffness of the subgrade, should be considered to 
determine the design pullout capacity. 

• The ranges of parameters used in the analysis 
corresponding to sand in the loose to dense state. The 
present approach is also applicable for other soil types. 
In that case, the soil-reinforcement adhesion should be 
added to the frictional component in the soil-
reinforcement interface response (refer equation 2), and 
suitable elastic parameters E and  should be adopted 
corresponding to the other soil type. 
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Symbols and abbreviations 
 
 Obliquity of the end-force 
 Nonlinear subgrade response factor in vertical 

compression= ults qLk  
D Overburden depth (m) 
x  Length of reinforcement element along x-axis 

(m) 
Es Modulus of elasticity of soil (kN/m2) 
 Angle of shearing resistance of soil 
r  Angle of interface shearing resistance 

between soil and reinforcement 
G Shear modulus (kN/m2) 
 Unit weight of the soil (kN/m3) 
G* Subgrade shear stiffness factor= LDGH   
H Shear layer thickness (m) 
J Reinforcement stiffness (kN/m) 
J* Reinforcement stiffness factor 
 Nonlinear subgrade response factor in shear = 

ultG   
ks Modulus of subgrade reaction or spring 

constant (kN/m3) 
Ka Active earth pressure coefficient 
L Reinforcement length (m) 
LH Horizontal projected length (m) 
 Subgrade normal stiffness factor = DLks   
n Total number of elements 
 Poisson’s ratio 
p, q Vertical stresses at the top and the bottom 

surfaces of  reinforcement (kN/m2) 
P Oblique end-force (kN/m) 
P* Normalized oblique pullout force = P/ THP 

*HP  Normalized horizontal component of oblique 
pullout force 

qult Ultimate normal/compressive strength of the 
subgrade (kN/m2) 

t, b Friction stresses or soil-reinforcement 
interface shear resistance on the top and 
bottom surface of the reinforcement (kN/m2) 

ult  Ultimate shear strength of the subgrade 
(kN/m2) 

T, T+T Tension in the reinforcement at distance x and 
x+x respectively (kN/m) 

THP Axial pullout capacity = 2DLtanr (kN/m) 
*maxT  Normalized maximum tension in reinforcement 

, + Slope of reinforcement with horizontal at 
distance x and x+x 

THP Axial pullout capacity of the reinforcement 
T* Normalized tension = T/THP 
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w Vertical displacement of the reinforcement (m) 
W Normalized displacement = w/wL 

x, z Horizontal and vertical axes 
X Normalized distance = x/L 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Subscripts 
c Center 
H Horizontal component 
i Node or element or iteration 
L Value at X = 1 
Max Maximum 
0 Value at X = 0 
X Horizontal direction 


