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The paper presents a rigorous analytical method, using the 
theory of the transfer matrix method for calculating the laterally 
loaded piles in multi-layered soils. Following the technique 
proposed by Muki and Sternberg, the problem is decomposed 
into extended layered soils and a fictitious pile characterized 
respectively by Young’s moduli of the layered soils and those of 

the differences between the piles and the layered soils. The 
unknown bending moments along the fictitious pile are 
determined by solving a Fredholm integral equation of the 
second kind, which imposes the compatibility condition that the 
lateral displacements of the fictitious pile are equal to those 
corresponding to the centroidal axe of the extended layered 
soils. The pile lateral displacement and slope distributions can 
be calculated based on the determined fictitious pile bending 
moment distribution. Selected results from parametrical studies 
are presented to confirm the validity of the proposed approach 
and to portray the influence of the governing parameters on the 
pile bending moment, displacement and slope distributions.
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1.    Introduction

Piles are widely used to as the foundation in soft 
deposit to bearing vertical load from super-structure, to 
prevent subsidence due to groundwater pumping (Xu et 
al., 2016), and to support laterally loaded structures, such 
as high-rise buildings, bridges, offshore platforms, nearby 
geotechnical constructions (Wang et al., 2013, 2014; Wu 
et al., 2015d; Zhang et al., 2015; Shen et al., 2013b, d), 
deep excavation or tunnel construction etc. (Shen et al., 
2014, 2016; Wu et al., 2015a-c; Wu et al., 2016). These 
buildings have to resist sever lateral loads caused by 
wind, earthquake, wind, waves, etc.. For a 100-m-tall 
building in Hong Kong, a typical design ultimate 
horizontal load may be as high as 2000 kN (Ng and
Zhang, 2001). Therefore, much work has been done on 
analyzing the load-deformation behavior of piles 
subjected to lateral loads by many researchers, including 
the p-y method (Matlock, 1970; Reese and Welch, 1975; 

and Reese et al., 1974), the elastic continuum method 
(Poulos, 1971; Banerjee and Davis, 1978; Poulos and
Davis, 1980; and Shen et al., 2013a, c, 2017), finite 
element method (Randolph, 1981; Trochanis et al., 1991; 
and Shen and Xu 2011), and elastic subgrade reaction 
method (Hetenyi, 1946; Reese and Matlock, 1956; and 
Davisson and Gill, 1963). 

All the above mentioned methods, however, have
limitations. For example, the finite element method is 
capable of modeling soil non-linearity, soil continuity and 
pile-soil interface behavior. However, the finite element 
method cannot be used in the routine design because of 
the effort required in modeling and computation. Hence, 
three main approaches, the p-y method, the elastic 
subgrade reaction method and the elastic continuum 
method are often used for analysis of laterally loaded 
piles. The soil resistance is modeled with discontinuous 
springs in the subgrade reaction method. The p-y method 
exhibits limitations similar to the subgrade reaction 
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method except that soil resistance is considered to be a 
non-linear function of pile displacement. The elastic 
continuum method, taking into account the continuity of 
the soil mass, is a more accurate solution considering the 
pile as a very thin rectangular strip and using Mindlin’s 

equation (1936) for a point load in the interior of an 
elastic half-space to obtain the deflections at various 
points along the pile due to a force applied at one level. 

Most of the elastic solutions consider piles 
embedded in a homogeneous soil system. Since in most 
applications, piles are installed in layered soils, a method 
which considers the piles in a layered soils is an 
important part of the analysis of pile foundations. Pise 
(1982) employed the Mindlin's equation to study the 
effect of soil layering on the behavior of laterally loaded 
piles. The location of the maximum bending moment was 
not evaluated. Because Mindlin's solution is valid only for 
homogeneous continuums, this analysis is strictly not 
capable to laterally loaded piles in layered soils. Because 
Mindlin's solution is used, the finite difference method 
(Yang et al., 2002; and Yang and Liang, 2006) is only 
appropriate for laterally loaded piles in a two-layered soil 
system and it cannot be used for a more general situation, 
such as piles in a multi-layered soil system. In addition, 
analyses of a laterally loaded piles installed in multi-
layered soils were done by assuming mathematical forms 
for the displacement field in the soil and minimizing 
potential energy for the pile-soil system (Basu and
Salgado, 2007, 2010; Basu et al., 2009).

In this paper, the laterally loaded piles in multi-
layered soils are reexamined and the above mentioned 
limitations for conventional calculation of the pile-soil 
interaction may be removed by using the fictitious pile 
method originally proposed by Muki and Sternberg (1970),
which have been used for analysing vertically loaded 
piles (Cao and Chen, 2008, 2011, 2012; Cao et al., 2007).

The analysis is thus similar in principle to analyses 
previously made for a laterally loaded bar which is 
partially embedded in a three-dimensional elastic half 
space (Pak, 1989). The layered soils are calculated by 
the theory of the transfer matrix, which is an extension to 
Muki (1960) and Sneddon (1992) solutions for multi-
layered soils. The bending moment, the real pile lateral 
displacement as well as the pile slope over the length of 
the pile can be readily determined. The results obtained 
are confirmed via comparisons with the available results. 
Selected results from parametrical studies are presented 
to portray the influence of the governing parameters on 
the pile bending moment, displacement and slope 
distributions.

2.    Mathematical formulation
 

In this section, a mathematical formulation is 
presented for the investigation of the behavior of a single 
laterally loaded pile embedded in layered soils. As shown 
in Fig. 1, let ^ `0,x,y,z be a rectangular Cartesian 
coordinate frame spanning the semi-infinite elastic 
continuum with elastic properties of the layered soil 
medium B . For the purpose of explanation, there are two-
layered elastic soils. Three or more layers of foundation 
can by analogy. The upper soil layer is of thickness 1H ,
with Young’s modulus s1E , Poisson’s ratio s1μ , overlying 
an infinite lower layer of modulus s2E , Poisson’s ratio s2μ

A circular pile of radius a , length L , Yung’s modulus 

pE , and circular cross-sectional region 
z

3 � �0 < z <L is 
embedded in layered soils. The pile is denoted by cB (Fig.
1(a)).

.

(a) Laterally loaded pile embedded in semi-infinite soil            (b) Extended layered soils                               (c) Fictitious pile

Fig. 1. Laterally loaded pile embedded in elastic semi-infinite layered soils.
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As in the treatment by Muki and Sternberg (1970) of 
this class of problems, the embedding soil medium is 
extended throughout the half space and the fictitious pile 

*B is introduced throughout their original location to 
account for the presence of the embedded pile (Fig. 1(c)).
The Young’s modulus *iE of the fictitious pile is equal to 
the differences between that of the real pile and the 
respective Young’s moduli of extended layered soils, i.e.

*i p siE = E -E ,  (i =1, 2) [1]

where siE is the Young’s modulus of the soil layer i , and 
the subscript i =1 or 2 denotes the soil layer number.

The pile is loaded with a combination of lateral shear 
force � �V 0 and a moment � �M 0 at its head (Fig. 1(a)). The 
extended layered soils as shown in Fig. 1(b) are treated a 
three-dimensional elastic continuum with elastic 
properties of the layered soils. Following the technique of 
Pak (1989), the fictitious reinforcement *B is regarded as 
one-dimensional elastic structure. The bending moment -
displacement relation *B can be expressed in the forms

� � � � ≤
2

*
*1 * 12

d u z
E I =M z ,  0  z <H

dz
[2a]

� � � � ≤ ≤
2

*
*2 * 12

d u z
E I =M z ,  H  z L

dz
[2b]

and the equilibrium equations

� � � �*
*

dM z
= V z

dz
[3]

� � � �*
*

dV z
= -p z

dz
[4]

where � �*u z , � �*M z and � �*V z =the lateral displacement, 
the bending moment and the shear force of the fictitious 
pile at depth z , respectively; � �*p z =the distributed 
normal force per unit length exerted by B on *B . *iE I =the 
bending rigidity of the fictitious pile. 

The loads from the pile to its embedding medium 
through concentrated bond force are direct load transfer 
clarified by Muki and Sternberg (1968). Treating the 
circumferential surface of the fictitious pile *B as 
frictionless, the external forces acting on *B are 
composed of the following items: (1) � �*V 0 , the resultant 
shear force at the top of 

*
B after a direct shear transfer; 

(2) � �*M 0 , the resultant bending moment at the top of 
*
B

after a direct moment transfer; (3) � �*V L , the resultant 
shear force at the bottom end of *B ; (4) � �*M L , the 
resultant bending moment at the bottom of *B ; and (5) 

� �*p z , the distributed normal force per unit length exerted 
by B on *B . By the law of action and reaction, the 
forgoing forces acting on the extended layered soils B
are: (1) � � � �+

*V 0 - V 0 , the direct shear transfer to the 
extended layered soils from the fictitious pile at the cross-
section

0
3 ; (2) � � � �+

*M 0 -M 0 , the direct moment transfer 
to the extended layered soils from the fictitious pile at the 
cross-section

0
3 ; (3) � �*V L , the shear transfer from the 

fictitious pile; (4) � �*M L , the moment transfer from the 
fictitious pile; and (5) � �*p z , the distributed normal force 
per unit length at the cross-section

z
3 . As in the 

treatment by Pak (1989), if the assumption of small cross-
sectional rotation of the pile is made, the direct moment 
transfers at the pile ends are negligible.

� �*M L =0 [5]

and

� � � �+
*M 0 - M 0 = 0 [6]

The compatibility condition requires that the lateral 
displacement of the fictitious pile and the extended soil 
layers be equal along the z-axis of over the length of the 
pile caused by the system of interactive forces. This 
condition leads to the following relationship

� � � � � � � � � � � �ª º¬ ¼
+

* * x * xu z = V 0 - V 0 u z,0 + V L u z,L

� � � �³     ≤ ≤
L

* x0
     + p ȟ X ]�ȟ Gȟ����� ] / [7]

where � �xu z,ȟ =influence displacement function which 
represents the displacement of the extended layered soils
at the depth z along the axis of the real pile cB due to a 
circular load over the cross-section [3 , acting in the 
positive x -direction, the resultant applied force having 
unit magnitude. This influence function may be obtained 
by the theory of the transfer matrix-bottom rigidity for 
layered soils which will be expressed later. Substituting 
Eq. [4] into Eq. [7] leads to

� � � � � � � � � � � �ª º¬ ¼
+

* * x * xu z = V 0 - V 0 u z,0 + V L u z,L

� � � �³      ≤ ≤
L *

x0

dV ȟ
    - u z,ȟ �Gȟ����� ] /

dȟ
[8]

Eq. [8] represents the primary governing equation for 
the pile-layered soils interaction problem considered. With 
the aid of Eqs. [3, 5 and 6] and proper account of the 
discontinuity of the integrand during an integration by 
parts, Eq. [8] can be further reduced to a Fredholm 
equation of the second kind:
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� � � � � � � � � � � � � �ö ö

ö ö

+

-
x x z

* x * z

u z,0 u z,ȟ
u z = V 0 u z,0 -M 0 -M z

ȟ ȟ

� � � �³
ö

≤ ≤
ö

2L x
* 20

u- M ȟ ]�ȟ Gȟ����� ] /
ȟ

[9]

Eq. [10] shows a horizontal circular load of unit 
intensity over the cross-section of radius a in elastic 
layered soils.

2 2

1P =
2ʌD D � U

[10]

With the aid of Eq. [10], the influence shear stress 
function � �+

zxĲ ]�] , which is defined as the shear stress of 
the extended layered soils at the depth z due to a 
horizontal circular load at the depth +z , the resultant 
applied force having unit magnitude, has the following 
property

� � � �+ -
zx zx

1Ĳ ]�] � Ĳ ]�]  �
2A

[11]

where A is the area of the laterally loaded pile embedded 
in layered soils. According to the Generalized Hooke’s 

Law, this influence function can be expressed as

� � � � � � � �ª º¬ ¼
+ - + -

zx zx zx zx
si

1Ȗ ]�] � Ȗ ]�]  Ĳ ]�] � Ĳ ]�]
G

                                � �
si

1= - , i =1, 2
2G A

[12]

where � �+
zxȖ ]�] =influence shear strain function which 

represents the shear strain of the extended layered soils
at the depth z due to a circular load at the depth +z ,
acting in the positive x-direction, the resultant applied 
force having unit magnitude, and siG =the shear modulus 
of the soil layer i .

This condition leads to (Cao, 2017)

� � � �ö ö

ö ö

+ -
x x

si

u z,z u z,z 1- = -
ȟ ȟ �* $

, � �i =1, 2 [13]

Substituting Eq. [13] into Eq. [9] yields

� � � � � � � � � � � �ö

ö
x *

* x
si

u z,0 M z
u z = V 0 u z,0 -M 0 +

ȟ �* $

           � � � �³
ö

≤ ≤
ö

2L x
* 20

u- M ȟ ]�ȟ Gȟ����� ] /
ȟ

[14]

Eq. [14] can be simplified as

� � � � � �³
L

* i *0
u z = - g z,ȟ 0 ȟ Gȟ

           � � � �§ · § ·
¨ ¸ ¨ ¸
© ¹ © ¹

* *
z z+u 0 1- +u L
L L

, � �i =1, 2 [15]

where

� �

­ ½§ ·
¨ ¸° °°© ¹ °
® ¾
§ ·° °
¨ ¸° °© ¹¯ ¿

≤1 1
*1

ȟ1- z,   z < ȟ
L1g z,ȟ  ���� �] �+

E I z1- ȟ����] ! ȟ
L

[16a]

� �

­ ½§ ·
¨ ¸° °°© ¹ °
® ¾
§ ·° °
¨ ¸° °© ¹¯ ¿

≤2 1
*2

ȟ1- z,   z < ȟ
L1g z,ȟ  ���+ � ] /�

E I z1- ȟ����] ! ȟ
L

[16b]

For the analysis in dimensionless form the following 
dimensionless parameters are introduced

zz =
a

, ȟȟ  
a

, LL =
a

, p
i

si

E
E =

E
,

� �� �i
si i

8ț  
1+μ ( ��

,

� � � �
3

si

M 0
M 0 =

4ʌ* D
, *

3
si

MM =
4ʌ* D

, *uu =
a

, � � � �
2

si

V 0
V 0 =

4ʌ* D
,

*
2

si

VV =
4ʌ* D

, � �i =1, 2

With the aid of these parameters, the relevant second 
kind Fredholm integral equation that furnishes the 
unknown function � �M z and the top and bottom 
displacements of the fictitious pile *B in extended layered 
soils can be expressed as the following form

� � � � � � � � � � � � � �³
1H

10
B z u 0 +C z u L + K z,ȟ 0 ȟ Gȟ � �0 ]

� � � �³
1

L

2H
+ K z,ȟ 0 ȟ Gȟ

� � � � � � � �ö
≤ ≤

ö 1 1
U z,0

= V 0 U z,0 -M 0 , 0 z <H ,H < z L
ȟ

[17]

where

� � § ·
¨ ¸
© ¹

zB z = 1-
L

, � � zC z =
L

, � � � �siU z,ȟ  �ʌ* DX ]�ȟ ,
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� �
­ ½§ ·
° °¨ ¸
° °© ¹® ¾
§ ·° °
¨ ¸° °© ¹¯ ¿

≤1 1

ȟ1- z,   z < ȟ
Lg z,ȟ  ,  0  z <H
z1- ȟ����] ! ȟ
L

,

� �
­ ½§ ·
° °¨ ¸
° °© ¹® ¾
§ ·° °
¨ ¸° °© ¹¯ ¿

≤2 1

ȟ1- z,   z < ȟ
Lg z,ȟ  ,   H < z L
z1- ȟ����] ! ȟ
L

,

� � � � � �
ª º
« »
« »¬ ¼

¦ ö
ö

22
i

i i i2
i=1

UK z,ȟ  ]�ȟ � ț J ]�ȟ
ȟ

,

� �� �i
si p si

8ț  
1+μ ( ( ��

, � �i =1, 2

Once � �M z has been found, the solution for the 
lateral displacement � �u z of the fictitious pile in the 
extended layered soils can be expressed as

� � � � � � � �§ ·
¨ ¸
© ¹³

L

i0

zu z = - ț J ]�ȟ 0 ȟ Gȟ �X � ��
L

           � �§ ·
¨ ¸
© ¹

z+u L
L

, � �i =1, 2 [18]

The differential equation of � �u z is obtained as

� � � � � �³
L

i0
ș ]  � ț+ ]�ȟ 0 ȟ Gȟ

           � � � �ª º
¬ ¼

1+ u L - u 0
L

, � �i =1, 2 [19]

where � �ș ] =the slope of the fictitious pile at depth z
and

� �
­ ½
° °° °
® ¾
° °
° °¯ ¿

ȟ1- ,   z < ȟ
LH z,ȟ  
ȟ- ,     z > ȟ
L

3.    Solution for influence displacement function in 
layered soils

To determine the influence displacement function, it is 
convenient to employ the transfer matrix method (Bufler, 
1971; Bahar, 1972; and Ai et al., 2002). The influence 
function can be expressed as

� � � � � �ª¬³
�

11 20

1u z,ȟ  ȗ Ȍ ȗ�]�ȟ - ȗU
2

              � � � �º¼21 0+Ȍ ȗ�]�ȟ - ȗU Gȗ [20]

where � �2J ȗU and � �0J ȗU are Bessel functions of orders 2 

and 0 respectively.

� � ª¬
2 0 1 2
1 2 1Ȍ ȗ�]�ȟ  6 �ȗ�]�ȟ��6 �ȗ�]�ȟ��Z �ȗ�]�ȟ��7 �ȗ�]�ȟ��

                  º¼
T0 1

2 zT (ȗ�]�ȟ��ı �ȗ�]�ȟ�

� � ª¬
2 0 1 2
1 2 1Ȍ ȗ���ȟ  6 �ȗ���ȟ��6 �ȗ���ȟ��Z �ȗ���ȟ��7 �ȗ���ȟ��

                   º¼
T0 1

2 zT (ȗ���ȟ��ı �ȗ���ȟ�

where 2
1S (ȗ�]�ȟ� , 0

2S (ȗ�]�ȟ� , 1w (ȗ�]�ȟ� , 2
1T (ȗ�]�ȟ� ,

0
2T (ȗ�]�ȟ� and 1

zı �ȗ�]�ȟ� stand for the Hankel transforms of 

2
1S (ȗ�]�ȟ� , 0

2S (ȗ�]�ȟ� , 1w (ȗ�]�ȟ� , 2
1T (ȗ�]�ȟ� , 0

2T (ȗ�]�ȟ� and

1
zı �ȗ�]�ȟ� , respectively, which are given by Ai (1999).

If the unknown quantities at the depth z in the thi
layer are above the loading level in which the horizontal 
circular load is applied, as shown in Fig. 2, � �Ȍ ȗ�]�ȟ can 
be derived from

� � � � � � � � � �i-1 n-1 1Ȍ ȗ�]�ȟ  ĭ ȗ�] �+ ĭ ȗ�+ /ĭ ȗ�ǻ+ Ȍ ȗ���ȟ

             ≤ ≤i-1 i m1     (H < z H,z H ) [21]
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Fig. 2. Horizontal circular load in elastic layered soils.
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where � �ĭ ȗ�]  6 6u size transfer matrix. It can be 
written as 

� �11 22 44 55
ȗ]×shȗ]ĭ  �FKȗ]  ĭ  ĭ  ĭ
4 1-μ

� �12 21 45 54
ȗ]×shȗ]ĭ  �  ĭ  ĭ  ĭ
4 1-μ

� �
� �

� �13 23 64 65
1- 2μ VKȗ]ȗ]×chȗ]ĭ  �  �ĭ  ��ĭ  �ĭ

2 1-μ � ��μ

� �
� �

� �14 25
7 - 8μ VKȗ]z×chȗ]ĭ  �  ĭ

8G 1-μ �* ��μ ȗ

� � � �15 24
z×chȗ] VKȗ]ĭ  � �  ĭ
8G 1-μ �* ��μ ȗ

� �16 26 34 35
z×shȗ]ĭ   �ĭ  ��ĭ  �ĭ
4G 1-μ

� �
� �

� �31 32 46 56
1- 2μ VKȗ]ȗ]×chȗ] � �ĭ  � �  �ĭ  � ĭ  ĭ

4 1-μ � ��μ � �

� �33 66
ȗ]×shȗ]ĭ  � �FKȗ]  ĭ
2 1-μ

� �
� �

� �36
3 - 4μ VKȗ]z×chȗ]ĭ  � �

4G 1-μ �* ��μ ȗ

� �
� �

� �
2

41 52
G 2 -μ ȗ×shȗ]Gȗ ]×chȗ]ĭ  �  ĭ

2 1-μ � ��μ

� � � �
2

42 51
Gȗ ]×chȗ] *μȗ×shȗ]ĭ  � �  ĭ

2 1-μ � ��μ

2

43 53 61 62
Gȗ ]×shȗ]ĭ   �ĭ  ��ĭ  �ĭ

1-μ
2

63
Gȗ ]×chȗ] *ȗ×shȗ]ĭ  � �

1-μ ��μ

� �Ȍ ȗ���ȟ can be determined from the following transfer 
matrix

� � � � � �1 2Ȍ ȗ���ȟ  ĭ ȗ��ǻ+ ĭ ȗ��ǻ+

                   � � � � � �+
n-1 n nLĭ ȗ��ǻ+ ĭ ȗ��ǻ+ Ȍ ȗ�+

� � � �    1 2     -ĭ ȗ��ǻ+ ĭ ȗ��ǻ+

                 � � ª º¬ ¼
T

m-1Lĭ ȗ�+ � ȟ ��������3�� [22]

where P is the Hankel transform of Eq. [10]

P = sinaȗ � ��Dʌȗ�                                                        [23]

If the unknown quantities at the depth z in the th
i

layer is below the loading level, � �Ȍ ȗ�]�ȟ can be derived 
from

� � � � � �i i+1Ȍ ȗ�]�ȟ  ĭ ȗ�] �+ ĭ ȗ��+

� � � �+
n n i-1 i m1ĭ ȗ��ǻ+ Ȍ ȗ�+ ���+ � ] �+�] !+ � [24]

� �+
nȌ ȗ�+ is expressed as

� � � � � �+
n n n-1Ȍ ȗ�+  ĭ ȗ�ǻ+ ĭ ȗ�ǻ+

                   � � � �m2 m-1ĭ ȗ�ǻ+ ĭ ȗ�ȟ �+

� � � � � �1 nĭ ȗ�ǻ+ Ȍ ȗ�� �ĭ ȗ�ǻ+

                   � � ª º¬ ¼
T

m2ĭ ȗ�ǻ+ ��������3��

   i-1 i m1(H < z <H,z >H ) [25]

4. Illustrative results and discussion

4.1 Comparison of the proposed analysis with other 
existent solutions
 

Based on the strain-potential approach proposed by 
Muki (1960) for asymmetric problem in the theory of 
elastic, the displacement influence function has been 
obtained by Pak (1989). In this study, the normalized 
displacement influence function is determined using the 
transfer matrix method. To confirm the validity of the 
proposed solution, the present solutions using the transfer 
matrix method for the laterally loaded piles in layered soils
will be compared to with a nondimensional solution 
obtained by Pak (1989) for the piles in homogeneous 
elastic soil. 

The model of the laterally loaded piles in three-layer 
soils is shown in Fig. 3 (b). In the three-layer soil analyses, 
the writers have assumed that 1ǻ+  ���/ and 

2ǻ+  ���/ respectively for the thickness of the upper soil 
layers, s1 s2μ  μ  ��� for the Poisson’s ratios, and 

p s2 p s1 p sBE / E =E / E =E / E =E =1000, 5000 for the ratios
of the layered soil stiffness. As shown in Fig. 4, the 
bending moment, slope and displacement distributions 
from the two methods are in good agreement, which 
confirms the validity of the present formulation and 
numerical scheme.

4.2 Parametrical studies
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The influences of some parameters and soil layering 
on the calculated bending moment, slope and 
displacement of laterally loaded piles in two-layer soils 
and three-layer soils are studied in detail in this section. 
The model of the laterally loaded piles in two-layer soils 
and three-layer soils are shown in Fig. 3 for the ratio of 
the base stiffness to the top soil stiffness sB s1E / E =10 ,
pile slenderness ratio of L / a =60 , the base soil 
Poisson’s ratio of sBμ  ��� and pile-soil stiffness ratios of 

p s1E / E =100, 1000 , and 5000 . In the three-layer soil 
analyses, the writers have assumed that 1ǻ+  ���/ and 

2ǻ+  ���/ respectively for the thickness of the upper soil 
layers, s1 s2μ  μ  ��� for the Poisson’s ratios, and 

s2 s1E / E = 4 for the ratio of the layered soil stiffness. As 
shown in Fig. 3 (b), the thickness of the upper two-layer 
soils is L .

Figs. 5 and 6 illustrate solutions for shear loading 
only and moment loading only, respectively. It can be 
observed that for both layered soil systems there is a poor 
agreement of the variation of bending moment, slope and 
displacement along the direction of normalized depth. 
With the increase of the normalized depth z , the bending 
moment, slope and displacement profiles under both 
shear and moment loading cases in three-layer soils tend 
to have a more apparent reversal at some depth. This 
feature reflects that the lateral loads applied to the pile are 
transferred to a great depth in three-layer soils. The 
examples show that explicit accounting of the different 
layers is necessary for accurate prediction of the laterally 
loaded pile response.
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Fig. 3. Model of laterally loaded pile in layered soils.
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Fig. 4. Bending moment, slope and displacement distributions 
under unit shear.

The normalized slope for the two layered soil systems 
and loading conditions are shown in Figs. 5(c, d) and
Figs. 6(c, d), while the corresponding normalized 
displacement are illustrated in Figs. 5(e, f) and Figs. 6(e, 
f), respectively. In accord with the reciprocal theorem in 
linear elastostatics, the absolute value of the top rotation 
due to a unit shear is found to be identical to the top 
displacement due to a unit moment for the whole range of 
modulus ratios and both layered soil systems.

5. Conclusions

This paper is aimed at establishing a rigorous method 
of analysis for a single, circular pile embedded in multi-
layered soils and subjected to a horizontal force and a 
moment at the pile top. The main findings and conclusions 
from this study are as follows:

(1) A fictitious-pile expression for estimating the pile-
soil interaction in multi-layered soils was established, 
which was formulated as a Fredholm integral equation of 
the second kind. The validity of the current method has 
been verified through comparisons with existing solutions. 

(2) In particular, it has been shown that soil layering 
has a definite impact on the pile response. Hence, proper 
accounting of the soil layers is necessary to accurately 
predict the lateral pile response. The new fictitious-pile 
expression and the theory of the transfer matrix for the 
laterally loaded pile have the capability of predicting the 
pile response with full consideration of soil layering. 

(3) For the whole range of modulus ratios and both 
layered soil systems, the absolute value of the top rotation 
due to a unit shear is found to be identical to the top 
displacement due to a unit moment.
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Fig. 5. Bending moment, slope and displacement distributions under unit moment.
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Fig. 6. Bending moment, slope and displacement distributions under unit shear.
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