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In this article, the memetic algorithm using gravity data is 
applied to determine the thickness of a 2-D sedimentary basin 
whose density contrast varies with depth as a parabolic function. 
This memetic algorithm is a combination of the genetic algorithm 
and the Nelder-Mead Simplex local search to find optimal global 
solutions based on the minimum of the objective function, which 
is the total of data misfit d and the ‘norm’ model m and the 
second term is multiplied by the weight parameter namely a 
Tikhonov regularization. The program is written in Matlab. 
Firstly, it was tested on a synthetic model and the interpretable 
results are coincident with the model. Then, it was applied on An 
Giang and Dong Thap gravity anomalies in the Mekong Delta, 
Southwest of Vietnam, where the density contrast’s function of 
sediment layers was found from the density contrasts of each 
layer of CL-1 well’s stratigraphic column. The results showed 
that for both An Giang and Dong Thap anomalies, the observed 
and calculated gravity anomalies were fitted well, but the 
difference between the calculated depths using the memetic
algorithm and the forward modeling method is slight because 
the approach to the solution of each method is different.
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1. Introduction 

In geophysics, the determination of sedimentary
basin’s thickness is a kind of gravity inverse problem. The 
most common method to solve this problem on computer 
is the forward modeling (FW) method which is performed 
by three steps: (1) to set up an initial model of a 
sedimentary basin based on geologic and geophysical 
knowledge; (2) the model's anomaly is calculated and 
compared with the observed anomaly based on the value
of root mean square error; (3) and then, model’s 
parameters are adjusted in order to improve the fit 
between the two above anomalies. This three-step 
process is repeated until these calculated and observed 

anomalies are sufficiently coincident (Blakely, 1995). The 
model of the sedimentary basin is often initialized as a 
polygon with M vertices or N vertical juxtaposed prisms 
and the solutions of the problem are the depths of 
vertices or the depths of the vertical prisms. Many 
authors have used this method and model as a set of 
vertical juxtaposed prisms with a constant density 
contrast (Bott, 1960) or density contrast varying with 
depth as a function of exponential (Cordell, 1973),
parabola (Rao et al., 1993), and hyperbola (Rao et al., 
1994).

In recent years, besides the rapid development of 
computer’s technology, global optimization algorithms 
such as evolutionary and genetic algorithms have 
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developed. These computational algorithms mimic the 
evolution of creatures in nature including initialization, 
selection, crossover, mutation, reproduction and 
replacement. These computational steps are similar to 
the three steps of the FW method as presented above. 
Therefore, many authors have used the genetic algorithm 
(GA) to solve the gravity inverse problem with the model 
as a polygon (Boschetti et al., 1997), (Liet, 2005), a set of 
vertical juxtaposed prisms (Toan et al., 2013, 2014), 
square plate (Krahenbuhl et al., 2006) or square prism 
(Montesinos et al., 2005, 2006). However, the GA often 
finds the approximation of global optimal solution 
because of confusion with the local optimum. Therefore, 
to well find the global optimal solution, in this paper, the 
memetic algorithm (MA), a hybrid genetic algorithm which 
is the combination of the genetic algorithm and local 
search method such as Nelder-Mead Simplex search
(Nelder and  Mead, 1965; Gao et al., 2010) is used 
(Moscato et al., 2003) and the model is a set of  2-D
vertical juxtaposed prisms whose density is a parabolic 
function of depth (Rao et al., 1993). This method was 
tested on a synthetic model and then applied on An 
Giang and Dong Thap gravity anomaly profiles, in the 
Mekong Delta, Southwest of Vietnam.

2. Methodology 

2.1 Modeling of a sedimentary basin and its gravity 
anomalies 

Consider a 2-D model of sedimentary basin (infinite in 
y - direction) whose density is a parabolic function of 
depth that was composed by N vertical juxtaposed prisms. 
Their gravity anomalies are measured at the center of the 
prisms in the x-direction (Fig. 1a). Assuming that all the 
prisms have the same horizontal and their tops are at the 
ground surface (Fig. 1b).

In reality, the density of the sedimentary basin model 
increases with depth, so the density contrast between the 
sediments and basement will decrease with depth 
because the density of the basement is greater than the 
density of the sediments. Assuming that the density 
contrast varying with depth can be represented by a 
parabolic function as following (Rao et al., 1994):
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where, (z) (g/cm3) is the density contrast at the depth  
z (km), 0 (g/cm3) is the density contrast observed at the 
ground surface,  (g/cm3) and  (g/(cm3km)) are 

constants which can be obtained by fitting Eq. [1] from 
density contrast - depth data.

A gravity anomaly of the sedimentary basin’s model 
at a certain point i comprises gravity anomalies of all the 
prisms:
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where, ∆gj(xi) is a gravity anomaly of the jth outcropping 
prism (z1 = 0 and z2 = z) at any point i and this anomaly is
given by the following formula (Rao et al., 1994):
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where, G is the gravitational constant and the other
parameters are given as the following:
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Fig. 1. Schematic illustration of a sedimentary basin. (a) The 
gravity anomaly produced by a sedimentary basin. (b) The model 
of sedimentary basin composed by N vertical juxtaposed prisms.
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The details of the parameters are given in Fig. 2.

2.2 Genetic algorithm (GA) 

GA is a method for solving global optimization 
problems based on a natural selection process that 
mimics the biological evolution. The algorithm is started 
with a set of solutions (chromosomes or individuals), 
called population, which is randomly generated. Each 
individual of the population is evaluated by using the 
fitness function for searching an individual with the 
highest fitness through a series of three operators.

- Selection: Select a pair of individuals from the 
current population, with the probability of selection being 
an increasing fitness function, for crossover and mutation.

- Crossover: With probability pc (the crossover 
probability), cross over a pair of parent chromosomes at 
a random chosen point to produce two offspring. For 
example, the strings 00010010 and 11110000 might be 
crossed over after the fourth position in each to produce 
000010000 and 11110010 (two offspring).

- Mutation: With probability pm (the mutation 
probability), a chosen random bit in an offspring is flipped 
to create a new individual. For example, the string 
00010010 might be mutated in its second position to 
produce 01010010.

This process is repeated for the next generations until 
the best fitness individual is found or the number of 
generations is satisfied. The last best fitness individual is 
the best solution of the problem (Haupt et al., 2004).

2.3 Objective function 

In order to evaluate individuals, the objective function 
(1/fitness function) is used and it consists of the weighted 
‘norm’ model m and data misfit d as the following:
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and βT is a Tikhonov regularization parameter to balance 
between d and m and  stabilizes the solutions. There 
are several techniques which have been developed to 
estimate an appropriate regularization parameter βT.
Here, the L-curve is used to find a value of βT

(Krahenbuhl and Li., 2006).
Thus, the problem is to minimize the objective 

function (Eq. [4]).   

2.4 Memetic algorithm (MA) 

The limit of GA is just to find the approximate value of 
the optimal solution because of the influence of local 
optimum and slow convergence. To solve the bounds, 
the hybrid genetic algorithm, which is the combination of 
the genetic algorithm and local search method, is used 
and called the memetic algorithm (Krasnogor et al., 2005; 
García et al., 2008; Neri et al., 2012). There are two 
common traditional local search methods: quasi-Newton 
method and Nelder-Mead Simplex method. In this 
research, the Nelder-Mead Simplex method is used 
because this is a very classical and powerful local 
descent algorithm (Chelouah et al., 2003).

The Nelder-Mead algorithm was proposed to 
minimize a real function f(x) for nRx . The method is 
started by an initial simplex with n +1 vertices, each of 
which is a points in nR and the simplex is transformed by 
using the iterative method through a sequence of four 
basic geometric transformations:
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Fig. 2. The prismatic model.
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After each appropriate transformation the current 
worst vertex is replaced by a better one. The iteration is 
continued to find the simplex satisfies:                         
f(x1)  f(x2) )  . . .   f(xn+1) (Lagarias et al., 1998).

The local search can be incorporated at any stage 
such as initialization, selection, crossover and mutation 
(Kumar et al., 2013). Thus, in this paper, the local search 
acts on each individual pair after the selection stage to 
introduce new individuals to crossover and to accelerate 
the search towards global optimality.

The MA satisfies the 3 - step process of the FW. The 
calculated steps of the MA are also the same as the 
calculated steps of GA; however, MA includes the local 
search step and it is also used to solve the gravity 
inverse problem on computer. Thus, the MA is used to 
determine the depths of the sedimentary basin. The 
flowchart of the MA for the inverse gravity problem is 
given in Fig. 3. 

The program is written in Matlab. 

3. Testing program on a model 

3.1 Model’s details, density contrast function and gravity 
anomalies

The proposed model of a sedimentary basin 
consisting of 43 vertical juxtaposed prisms at an interval 
of 0.5 km along the x-axis and its density contrast is a 
parabolic function. The vertical section of this model is 
represented in Fig. 4a. The zmax = 1.498 km of the model 
is used to limit the depths of the computational model 
later. The function of density contrast could be referred
Eq. [1] with the parameters: o = - 0.55,  = - 0.55 and
 = 0.2828.

Fig. 5. The L curve to determine the Tikhonov regularization
parameter.
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Fig. 3. Flowchart of the MA for the inverse gravity problem
(Input data: ∆gobs: the observed gravity anomalies, ∆ρo, β:
density parameters, βT: the Tikhonov regularization parameter, ε:
the predetermined value (stopping criterion) and Nmax: maximum 
loop (stopping criterion))
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Fig. 3. Flowchart of the MA for the inverse gravity problem
(Input data: ∆gobs: the observed gravity anomalies, ∆ρo, β:
density parameters, βT: the Tikhonov regularization 
parameter, ε: the predetermined value (stopping criterion)
and Nmax: maximum loop (stopping criterion)).
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Table 1. Model’s gravity anomalies at some points.

Location of
points

1 5 10 15 20 25 30 35 40

The theory
gravity anomalies

-3.518 -4.721 -11.526 -16.124 -17.869 -17.915 -15.850 -11.538 -8.513

The noisy 
gravity anomalies

-3.707 -4.673 -11.233 -15.685 -17.892 -17.885 -15.902 -11.723 -8.753

Table 2. Values of βT, d and m.

βT 0.01 0.02 0.05 0.08 0.3 0.5 0.7 1

d 0.0205 0.0201 0.0198 0.0196 0.0256 0.0288 0.0328 0.0365

m 1.1490 0.4744 0.3299 0.2556 0.243 0.2331 0.2252 0.2295

 

Table 3. The objective function’s values () in 5 computation times of the model.

The  objective function’s values at the number of the loop of each computation

No. 1 130 230 330 430 530 630

1 26.9401 0.1513 0.0456 0.0440 0.0436 0.0433 0.0430

2 35.4403 0.1568 0.0457 0.0441 0.0436 0.0434 0.0431

3 28.3054 0.0750 0.0451 0.0447 0.0439 0.0436 0.0432

4 23.7679 0.0657 0.0456 0.0445 0.0439 0.0434 0.0431

5 27.7960 0.1121 0.0471 0.0441 0.0435 0.0432 0.0429

 

Table 4. Some observed and calculated gravity anomalies of the model.

Location of
points

1 5 10 15 22 25 30 35 40

The observed
gravity anomalies -3.707 -4.673 -11.233 -15.685 -18.485 -17.885 -15.902 -11.723 -8.753

The calculated
gravity anomalies

-3.688 -4.646 -11.305 -15.884 -18.151 -18.015 -15.853 -11.632 -8.669
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Table 5.

Location of points 1 5 10
15 22 25 30 35 40

Depths of model 0.154 0.176 0.640 1.169 1.498 1.464 1.168 0.616 0.413

Calculated depths 0.168 0.177 0.617 1.096 1.519 1.519 1.171 0.667 0.451
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Replaced widths and depths of each prism of model 
and parameters of density contrast into Equations [3b], 
[3a], [3] and [2] to compute the theory gravity anomalies 
of the model at the center of each prism; after that, these 
values are corrupted by the addition of noise (plus 0.2 
rand(size(gthe)). The values of theory and noisy gravity 
anomalies of the model at some positions were extracted 
and given in Table 1. The theory (line) and noisy (dots) 
gravity anomalies of the model are represented in Fig. 4b.

3.2 Parameters of the memetic algorithm (MA) 

The program is started by a random population. It is a 
set of individuals and each individual contains the 
solutions (unknowns) of the problem. According to 
Reeves, (1993) and Montesinos et al., (2005), a 
population size is chosen between 13 and 18 individuals 
for successful exploration of the solution space.

In this paper, a population containing 16 individuals is 
chosen; the crossover probability pc = 0.5 and the 
mutation probability pm = 0.1 (Haupt et al., 2004). The 
parameters of local Nelder-Mead Simplex search are 
chosen: ρ = 1 (reflection),   = 2 (expansion),             
 = 0.5 (contraction), and σ = 0.05 (shrinkage) (Lagarias 
et al., 1998). 

3.3 Tikhonov regularization parameter

As presented in section 2.3, there was the Tikhonov 
regularization parameter T in the objective function (Eq. 
[4]). To determine this parameter, the memetic algorithm 
is used with 8 different Tikhonov regulation parameters to 
compute the thickness of the above model from noisy 
gravity anomaly. With each Tikhonov parameter, the 
inverse problem is computed in 630 generations (630 
loops) to find m and d. The results are given in Table 2. 

To estimate the best regularization parameters βT, the 
L-curve method is used by plotting log(d) versus log(m), 
and the logarithmic graph is showed in Fig. 5. The value 
βT at the ‘elbow’ of this curve is the best Tikhonov 
regulation parameter (Krahenbuhl and Li, 2006). This 
parameter plays a role to balance between two errors m

and d in the objective function; hence, solutions of the 
problem are not dispersive but they converge rapidly.

The results show that the best parameter is T = 0.08; 
the objective function is: 

md  08.0  [9] 

Eq. [9] is used to find the solution of the sedimentary 
basin for synthetic model and real data. 

3.4 Determining the thickness of the model’s 
sedimentary basin

The noisy gravity anomaly (dots) in Fig. 4b is used as 
the observed data to determine the depths of model’s 
sedimentary basin because the real data always contain 
noises. The model comprises 43 prisms, therefore the 
solution of the problem also comprises 43 unknowns that 
are the depths zi of each prism. Thus, each individual 
(chromosome), a set of unknowns, must contain 43 
genes (43 unknowns). They are initialized randomly 
between zmax  100 % (0 km ≤ zi ≤ 2.997 km). The 
number of individuals of the population and other 
parameters of MA were presented in section 3.2. The 
stopping criteria of computation are either the objective 
function’s value of the best individual   0.001             
( = 0.001) or the number of generations evolution equal 
to Nmax = 630.

The inverse problem is solved 5 times. In each 
computation, the best solution was found after 630 
generations (the 2nd stopping criterion). Table 3 shows 
the values of objective function according to the number 
of generation of each computation time, and Fig. 6 
represents these values in term of semilogarithmic graph. 
They also show that the problem is almost convergent 
after 230 generations. Therefore, it is necessary to 
present the results of the 5th computation time with          
 = 0.0429 at the 600th generation.
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Fig. 6. The objective function’s values in 5 times of computation.

. Some extraction results of the observed and
calculated gravity anomalies are given in Table 4. The 
observed (dots) and the calculated (line) gravity 
anomalies are represented in Fig. 7; they show that the 
closeness of fit between the two anomalies with the data 
misfit d = 0.0196.

Table 5 represents some depth values that were 
extracted from the real and calculated depths of the 
model. The geometry of the model (dots) and the 
calculated depths (line) are represented in Fig. 8. They
show that both real depths (maximum depth is 1.498 km) 
and calculated (maximum depth is 1.519 km at the 22th

prism) are almost approximate.
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The testing program on the model successfully 
obtained, therefore this method is applied in order to 
solve the following real problems.

4. Application on gravity data in the Mekong Delta–
Southwest of Vietnam and discussions 

The Mekong Delta (Fig. 9) is a region in the 
Southwest of Vietnam where the Mekong River 
approaches and empties into the sea via a network of 
distributaries. The Mekong Delta region encompasses a
large portion of Southwestern Vietnam of 39,000 square 
kilometers, and almost all the area is covered with water, 
according to the season. The geological structure of the 
Mekong Delta could be divided into three zones and a 
bead: they are Bien Hoa swell, Can Tho basin, Ha Tien 
swell and Soc Trang swell bead.

Fig. 9. The Mekong Delta - Southwest of Vietnam.

Bouguer gravity anomalies of the Mekong Delta were 
measured by Cuu-Long Petroleum Agency from 1971 to 
1981 (Quyet, P. D., 1985). In this paper, two profiles of 
An Giang and Dong Thap gravity anomalies in Cantho 
basin are interpreted.

4.1 The function of density contrast

In the Mekong delta, there are two deep wells: 
Phung-Hiep well (800 m) and CL-1 well (2100 m). The 
density contrasts of each layer of the stratigraphic column 
of CL-1 well (Liet, D. V., 1995) are used as the input data 
to determine the parameters of the density contrast of 
depth which is the parabolic function (Eq. [1]) using the 
least square nonlinear regression method. The results 
show as the following: 
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Fig. 10. Approximation of  real density contrast - depth data by 
parabolic function.
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The graph of measured density contrasts of the 
stratigraphic column of CL-1 and the graph of the 
parabolic function are represented in Fig.10. The values 
of parameters in Eq. [10] are 0 = - 0.55, α = - 0.55,       
β = 0.2828 which are used to compute the thickness of 
the sedimentary basin in the Mekong Delta. 

4.2 Data

The observed gravity anomalies are Bouguer 
anomalies that are the sum of regional anomalies and 
residual (local) anomalies. In the interpretation of the 
thickness of the sedimentary basin, the residual 
anomalies are used. The residual anomalies are equal to 
Bouguer anomalies minus to regional anomalies. In this 
paper, the regional anomalies are computed by the least 
square method using a second polynomial in two 
variables of latitude and longitude of measured positions. 

4.3 Interpretation of An Giang gravity anomaly

The profile of residual gravity anomalies of An Giang 
is in the direction of the Northwest (10o22’ N, 105o12’ E) –
Southeast (10o12’ N, 105o21’ E). There are 49 measured
points with equal interval 0.5 km and minimum value 
gmin = - 21.9 mgal, thus, the approximate maximum
depth of its source is za_max = 1.858 km (the thickness of 
an infinite slab based on the minimum value of gravity 
anomaly). This value is used to limit the depths of the 
computational model later. Fig. 12 represented the 
observed negative gravity anomalies (dots) of this profile 
whose graph appears as a parabolic shape with its vertex 
at the bottom. This negative gravity anomaly style 
showed that its source is a sedimentary basin. Therefore, 
the memetic algorithm can be used to determine the 
thickness of its source.
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Fig. 11. The objective function’s values of An Giang anomaly in 
5 times of computation.
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Fig. 12. Observed (dots) and calculated (line) An Giang gravity 
anomalies. 

The model of the inverse problem is the sedimentary 
basin which comprises 49 vertical juxtaposed prisms at 
an interval of 0.5 km along the x- axis, and its density 
contrast varies with depth as a parabolic function (Eq. 
[10]), and the measured points at the center of each 
prism. With this model, the solution of the problem 
comprises 49 unknowns, consequently, each individual 
contains 49 genes. They are initialized randomly between 
za_max  100 % (0 km  ≤ zi ≤ 3.715 km). The number of 
individuals of the population and other parameters of MA 
are presented in section 3.2, and the stopping criteria are 
either the objective function’s value of the best individual  
  0.001 ( = 0.001) or the number of generations 
evolution equal to Nmax = 1000.
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Fig. 13. Geometry of sedimentary basin of An Giang: MA 
method (line), FW method (dots). 

The inverse problem is also computed 5 times. In 
each computation, the best solution is found after 1000 
generations (the 2nd stopping criterion). Table 6 shows 
the values of objective function according to the number 
of generation of each computation time. Fig. 11 



175
L.P. Toan and D.V. Liet / Lowland Technology International 2015; 17 (3): 167-178

represents these values in form of semilogarithmic graph. 
This shows that the problem is almost convergent after 
the 600th generation. 

The first computation time with its minimum value of 
objective function  = 0.0778 is chosen to present the 
results. Some observed (gobs) and calculated (gcal)
anomalies are showed in the Table 7. The observed 
(dots) and the calculated (line) gravity anomalies are 
represented in Fig. 12 with the data misfit d = 0.0169.

Because there is not any well near An Giang anomaly, 
it is difficult to verify the depth results of MA method. To 
overcome this problem, the FW method is applied to 
estimate the depths of this anomaly and to compare all 
depth results. Some calculated thickness of An Giang 
sedimentary basin using MA’s algorithm (data misfit is 
0.0169) and FW method (data misfit is 0.1211) are given 
in Table 8. The calculated thickness using MA’s algorithm 
(line) and FW method (dots) for An Giang profile are 
represented in Fig. 13 with the maximum depth 2.558 km 
and 2.557 km, respectively. Although the maximum 
calculated depths of the two methods are coincident but 
two graphs in Fig. 13 shows that there are some different
that will be discussed in section 4.5.

4.4 Interpretation of Dong Thap gravity anomaly

The profile of residual gravity anomalies of Dong 
Thap is in direction Southeast (10o21’ N, 105o33’ E) –
Northwest (10o17’ N, 105o43’ E). There are 35 measured 
points at equal interval 0.5 km and minimum anomaly 
value gmin = -13.2002 mgal; therefore, the approximate 
maximum depth of its source is zb_max = 0.8117 km. The 
computation of the thickness of sedimentary basin 
performed in Dong Thap is similar to the An Giang 
anomaly but the difference is the number of observed 
points (35 points) so the model of sedimentary basin of 
Dong Thap only comprises 35 vertical juxtaposed prisms.

Fig. 14 represents the objective function’s values in
the form of semilogarithmic in accordance with the 
generations in 5 times of computation. They also show 
that the problem is almost convergent after the 600th

generation.
As presented above, the computed results with its 

value of objective function minimum  = 0.0102 are 
chosen to present the results. The graph of the observed 
(dots) and calculated (line) gravity anomalies is 

Table 6. The objective function’s values () in the 5 computation times of An Giang.

The  objective function’s values at the number of loop of each computation

No. 1 100 200 400 600 800 1000

1 24.5425 0.6261 0.1861 0.0997 0.0827 0.0791 0.0778

2 20.9287 0.9651 0.1658 0.1040 0.0857 0.0816 0.0788

3 28.6116 0.6659 0.1652 0.0986 0.0830 0.0797 0.0784

4 20.3527 1.0720 0.1737 0.1005 0.0854 0.0810 0.0783

5 23.5532 0.7295 0.1684 0.1029 0.0852 0.0791 0.0779

 

 
Table 7. Some observed and calculated gravity anomalies of An Giang.

Location of points 5 10 15 20 25 30 35 40 45 

The observed gravity anomalies -11 -15.5 -20.6 -21.9 -21.1 -17.3 -13.8 -9.2 -6.4 

The calculated gravity anomalies -10.78 -15.63 -20.47 -21.78 -20.85 -17.49 -13.67 -9.22 -6.38 
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Table 8. Some depths of An Giang anomaly calculated by MA’s algorithm and FW method.

Location of points 5 10 15 20 25 30 35 40 45

Calculated depths by MA 0.583 0.909 2.214 2.545 2.182 1.216 0.860 0.447 0.293

Calculated depths by FW 0.599 1.046 2.184 2.539 2.307 1.326 0.886 0.428 0.278
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represented in Fig. 15. They show that two anomalies 
significantly agree with data misfit d = 0.0006.

Fig. 16 represents the computed thickness of Dong 
Thap sedimentary basin using MA’s algorithm (line) with 
the maximum depth of 0.925 km and the other one using 
FW method (dots) with the maximum depth of 0.873 km. 
The data misfit of FW method (0.0423) is larger than the 
data misfit of MA (0.0006).
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Fig. 14. The objective function’s values of Dong Thap anomaly 
in 5 times of  computation.
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Fig. 15. Observed (dots) and calculated (line) Dong Thap gravity 
anomalies. 
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Fig. 16. Geometry of sedimentary basin of Dong Thap: MA 
method (line), FW method (dots). 

4.5 Discussions

The results in 4.3 and 4.4 sections show that the
accuracy of the observed and calculated anomalies for 
both An Giang and Dong Thap profiles is significantly 
compatible with data misfits of 0.0169 and 0.0006,
respectively. But the calculated depths using the MA and 
the FW methods for both An Giang and Dong Thap 
anomalies are slightly different because the approach to 
the solution of each method is different. Indeed, the FW 
method used the formula of an infinite slab to initialize 
one model, and then the depths of this model were
adjusted based on the differences between the observed 
and calculated anomalies by one formula. Thus, the 
solution is poor (only one model) and subjective (one 
formula). Meanwhile, the MA’s algorithm is started with 
many models which are randomly initialized. These 
models are adjusted by genetic operators and the 
calculations based on random numbers. By the end of 
the computation, the best model among many other 
models is selected. This solution is rich (selecting one 
model from many models) and objective (using genetic 
operators and random numbers). So it could deduce that 
the calculated depths using the MA’s algorithm are 
reasonable.

5. Conclusions 

The memetic algorithm, which is the combination of 
the genetic algorithm and the Nelder-Mead Simplex local 
search, has been developed in order to determine the 
thickness of the sedimentary basin with the parabolic
density contrast. This program was tested on the 
synthetic model and then was applied on the two
measured gravity profiles in the Mekong Delta –
Southwest of Vietnam. The interpretation of the model 
showed that there are the coincidence between the initial 
model and the calculated model, and the theory and 
calculated gravity anomaly’s model are well suitable.

In the real cases, the memetic algorithm was used to 
interpret An Giang and Dong Thap gravity profiles. Since 
there aren’t deep wells near the two gravity profiles, 
practically, it is difficult to verify the calculated geometry 
of sources. To solve this problem, the calculated 
geometry of sources using the MA’s algorithm and FW 
method for both profiles are compared and the results 
showed that there are no significant differences. In 
addition, the results also showed that the observed and 
calculated gravity anomalies are fit together for both An 
Giang and Dong Thap profiles. These results are an 
important premise to solve a 3-D inverse gravity problem 
by using the MA, as suggested for further research.
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Symbols and abbreviations 

  Density contrast at the depth 
0  Density contrast at the ground surface
,   Constants of the function density 
G Gravitational constant
pm Mutation probability
pc Crossover probability 
d Data misfit 
m  Model object function

  Objective function
βT  Tikhonov regularization parameter
  Transformation of reflection 
  Transformation of expansion 
  Transformation of contraction 
  Transformation of shrinkage 
ε, Nmax stopping criteria
FW Forward modeling
GA Genetic algorithm
MA Memetic algorithm


