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BEARING CAPACITY OF SPREAD FOUNDATIONS ON SAND OVERLYING CLAY

K. Yamamoto' and D. Kim?

ABSTRACT: The ultimate bearing capacity of spread foundations on a sand layer overlying clay has been
extensively investigated for practical use. First, a review of previous studies on bearing capacity problems for this
type of foundation has been performed and a discussion is presented concerning the application to practice. Second,
the kinematic approach of limit analysis has been used to calculate the upper bound of the true ultimate bearing
capacity. The kinematic solutions are upper bounds and their accuracy depends primarily on the nature of the
assumed failure mechanism. This approach makes it convenient to create design charts, and it is possible to trace the
influence of parameters. Third, the commercial finite element program ABAQUS was applied to obtain the ultimate
bearing capacity based on the elasto-plastic theory. Although FE analysis has still not gained wide acceptance in
foundation practice, FE analysis has the great advantage in which the equations of equilibrium and compatibility are
solved together, compared with limit analysis. Finally, results obtained from the kinematic approach and the program
ABAQUS were compared with those from the existing limit equilibrium equations proposed by Yamaguchi,

Meyerhot and Okamura et al. for confirming the validity of their application to practice.
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INTRODUCTION

Ultimate bearing capacity and the failure
mechanism of shallow foundations on a
homogeneous soil layer have been largely
investigated to date since the conventional bearing
capacity theory proposed by Terzaghi (1943).
Shallow foundations are sometimes located in a sand
layer with limited thickness on a deep clay bed. In
practice, the bearing capacity of foundations on soft
clay is often improved artificially by placing a sand
layer on the clay. Even in natural soils, there are
many cases where the soil properties vary with the
depth. The bearing capacity and failure mechanism of
such nonhomogeneous soil profiles still remain
unclear due to the relative difficulty of obtaining
exact solutions, compared with a homogeneous soil.
Therefore, the purpose of this paper is to investigate
the specific case of a rigid foundation on the surface
of a uniform sand layer overlying a homogeneous bed
of clay and to solve these bearing capacity problems
using several approaches for the application to

practice. Although the strength properties of the
upper sand layer and the lower clay are quite different,
each layer is often assumed to be homogeneous.
Recently, the finite element method (FEM) has been
recognized as a very effective tool to study
inhomogeneous soils like two-layer foundation soils,
because it can account for complex boundary
conditions and soil inhomogeneity. In performing FE
analysis, however, rich experience and some trial-
and-error is required for discretization as well as
selection of an analytical method, model and soil
parameters. For this reason, FEM has still not gained
wide acceptance in foundation design practice. In
addition, for problems like two-layer foundation soils,
convergence may be difficult to achieve.

The ultimate bearing capacity of foundations on a
sand layer overlying clay has been mainly estimated
by small-scale model tests and limit equilibrium
methods. Yamaguchi (1963) first proposed the load
spread mechanism, in which the load below the
foundation is assumed to be spread uniformly over
the top of the clay layer and that the foundation fails
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due to a bearing capacity failure within the clay, as
shown in Fig. 1. This approach is widely known as a
simplified calculation of the bearing capacity. The
load spreading angle « to the vertical plane in Fig. 1
is always constant ( @ =30° ), regardless of the
strength parameters ( ¢ and ¢,) of two-layer
foundation soils and H/B. Although the value of « is
an important factor for the calculated bearing capacity,
it still remains unclear which value of « is suitable.
As a characteristic of this approach, it is useful for
understanding the mechanics of the problem
ituitively. Meyerhof (1974), Hanna and Meyerhof
(1980), and Hanna (1981) proposed the punching
shear mechanism as shown in Fig. 2, in which a sand
block having vertical sides is assumed to be pushed
into the clay together with the foundation. The sand is
also assumed to be in a passive condition and the
bearing capacity is obtained from the equilibrium
condition of the sand block. In this approach, a
punching shear coefficient K, is introduced to
consider conveniently the passive force on a vertical
plane below each edge of the foundation. Typical
punching shear coefficients for the punching shear
mechanism can be found in their papers. Hanna and
Meyerhof (1980) presented the values of K|
corresponding to each friction angle ¢ as a function
of the undrained shear strength of clay and the
punching shear parameter 6/ ¢. They presented the
cases only for high friction angle ¢ =40, 45, and 50°
and these charts are not shown in nondimensional
form. In the series of research by Meyerhof and
Hanna, since the design charts for K| are not shown in
nondimensional form, the application to practice is
quite restricted.

Kraft and Helfrich (1983) reported that the method
developed by Hanna and Meyerhof (1980) provides
good estimates of the bearing capacity of shallow
foundations, and the projected area method using a
load distributed with 2V:1H should not be used in
comparison with measured results of full-scale and
model bearing capacity tests. Kenny and Andrawes
(1997) discussed load spreading analysis for a sand
layer overlying clay based on data from a model
loading test. They proposed a load spreading angle
depending only on the bearing capacity ratio (q/q.)
and a polynomial function of the ratio of applied
footing stress and ultimate bearing capacity (q/q,) and
the normalized settlement (S/B). However, it is
difficult to apply their results to practice since there is
a deficiency in the general approach proposed (Burd

S={ vy (D+H)'Ky/2}tan ¢

B
l«—>
e

' sand
A clay
c, N, +y(D+H)
B’=B+2Htan «

Fig. 1  Load spread mechanism proposed by
Yamaguchi (1963)
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and Frydman 1999). Also, it would be difficult to
propose accurately the load spreading angle for any
particular case. Additionally, because of the scale
effect of bearing capacity, a series of centrifuge
model loading tests on dense sand overlying soft clay
were carried out to investigate ultimate bearing
capacity and associated deformations including the
failure mechanism (Okamura et al. 1997). Okamura et

al. (1998) proposed a failure mechanism shown in Fig.

3, based on the results of the centrifuge tests and
derived newly the bearing capacity equation using the
limit equilibrium method. In this mechanism, the
vertical stress on the base of the sand block was
assumed to be the ultimate bearing stress of a rigid
foundation with rough base on the clay subjected to a
surcharge pressure. It was also assumed that the load
spreading angle within the upper sand layer changes
with both varying strength parameters in the two soil
layers and the ratio of the depth of sand below the
foundation to the width of the foundation, H/B. The
main difference of the bearing capacity equations
proposed by Yamaguchi and Okamura et al. using
load spread mechanism is the assumptions of « and
the shearing resistance acting on the sides of the sand
block in the sand layer. Since the centrifuge tests
provide nearly the same stress level as that in the
prototype, the results obtained from the centrifuge
tests would be more realistic than those from small
gravitational tests. Moreover, they have obtained
relatively good agreement between measured bearing
capacity and calculated one. It is therefore considered
that the ultimate bearing capacity calculated by
Okamura et al. can be regarded to be most accurate
among above limit equilibrium methods. Notice that
all limit equilibrium methods proposed by
Yamaguchi (1963), Meyerhof (1974), Hanna and
Meyerhot (1980), Hanna (1981) and Okamura et al.
(1998) lack rigor, neither the equilibrium condition
nor the compatibility condition are guaranteed there.
Burd and Frydman (1997) investigated the bearing
capacity of sand layers overlying clay using both
finite element and finite difference methods to make
the consistency and reliability of their results. They
illustrated the mechanics of the system, the
effectiveness of the sand layer for spreading the
footing load. Also, they showed that a load spreading
angle increases with increasing sand friction angle,
and tends to reduce significantly when the shear
strength of the clay increases. Referring to the bearing
capacity equation proposed by Okamura et al. (1998),

Mizuno and Tsuchida (2002) calculated the ultimate
bearing capacity on a sand layer overlying clay using
elasto-plastic FEM. They reported that FEM solutions
and the ultimate bearing capacities calculated by
Okamura et al. agreed well, regardless of the
variation of H/B. In their analytical conditions, they
considered an undrained shear strength of 100 kN/m®
for the clay layer, which is quite large compared with
the typical clay foundation. Moreover, neither the
outline of the analytical method nor the bearing
capacity vs. settlement curves from their FEM
analysis was given. Therefore, it remains unclear how
they obtained the ultimate bearing capacity from their
analysis. Michalowski and Shi (1995) applied the
upper bound analysis to several combinations of two-
layer foundations soil where the foundation rests on a
sand layer overlying clay. They showed that the depth
of the failure mechanism is very dependent on the
strength of the clay. The results were presented in the
form of useful design charts that cover a broad range
of parameters. They also considered a relatively hard
clay rather than a weak one. They neither presented
the bearing capacity equation for two-layer
foundation soils derived from the upper bound theory
and another failure mechanism where the failure is
entirely contained within the upper sand layer, nor
compared adequately the upper bound solutions with
other solutions derived from other methods for the
validity of practice use. They compared some
solutions with those derived from other methods only
for the case of high internal friction angle, ¢ =40° .

The objective of this paper is to investigate the
ultimate bearing capacity of spread foundations on a
sand layer overlying clay using several approaches
for the application to practice. First, upper bound
analysis was applied to calculate the upper bound of
the true ultimate bearing capacity for this type of
problem, similar to the approach proposed by
Michalowski and Shi (1995). Next, the commercial
finite element program ABAQUS (HKS 2001) was
also used to obtain the ultimate bearing capacity
based on elasto-plastic theory. Finally, results
obtained from the upper bound analysis and the
program ABAQUS were compared with those from
the limit equilibrium equations proposed by
Yamaguchi (1963), Meyerhof (1974) and Okamura et
al. (1998) for confirming the wvalidity of their
application to practice.
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PROBLEM TO BE ANALYZED

This paper is concerned with the specific problem
of the bearing capacity of spread foundations on a
sand layer overlying clay. The analytical conditions
adopted in this paper are shown in Fig. 4, in which B
is the width of foundation and H is the depth of a
sand layer below the foundation. In the calculation of
bearing capacities, B=1.0 m and a unit weight of vy
=20 kN/m’ for the sand were used. The values of the
internal friction angle ¢ for the sand were 30° |,
35° and 40° , and the values of cohesion ¢, for the
clay were 10, 30, and 50 kN/m® FEach layer was
assumed to be homogeneous. Values of ratio H/B
included H/B=0, 1, 2, 3, and 4. It is noted that H/B=0
and H/B=5 indicate uniform clay and sand soils,
respectively. The case of a rigid foundation with
rough base was considered. In this paper, the
conditions shown in Fig. 4 are analyzed using the
existing limit equilibrium method, upper bound
analysis and finite element analysis.

UPPER BOUND ANALYSIS

Limit analysis is a convenient mathematical tool
for estimating the bearing capacity of foundations.
The upper bound theorem states that if the velocity
(or strain rate) field is unstable (i.e., the rate of
external work calculated from the velocity (or strain
rate) field exceeds or equals the internal power
dissipation) and kinematically admissible (i.e., the
strain rate field is compatible with the velocities at the
boundary of the soil mass), then collapse is either
imminent or underway; that is, the true collapse load
is definitely less than or at most equal to the load
calculated from such a condition (e.g. Chen 1975;

B
footing
v = 20kN / m® q
sand ¢ =30,35,40(deg )
H/B=0,1,2,3,4
clay ¢, =10,30,50kN / m*

Fig. 4 Analytical conditions adopted in this paper

Chen and Liu 1990). The upper bound theorem
satisfies the flow rule (the constitutive relation of the
material), the compatibility condition and the velocity
boundary conditions, but not the equilibrium
condition. Based on the failure mechanism proposed
by Michalowski and Shi (1995), the failure
mechanism as shown in Fig. 5(a) was set up. In the
case of the general shear failure, it is considered that
this mechanism would be a suitable representation of
the real failure mechanism. In Fig. 5(a), a is the
angle of the side to the vertical in the sand block, / is
the depth of the failure mechanism, V; is the
kinematically admissible velocity vector and [V]; is
the velocity-jump vector along discontinuities. The
mechanism is symmetrical and the region ocba moves
downward as a rigid body at the same velocity V, as
the foundation. The downward movement is
transmitted as the transversal movement of the fan
region bed. Consequently, the movement of the
region bed is transmitted as the upward movements of
both the region abde and triangular region aef.
Upward is the negative direction. The upper bound of
the true ultimate bearing capacity can be calculated
by the following energy balance equation:

2Ebc + ZE‘bcdJr ZE‘cdJr 2Ede =2 Wopba +2 VVpcb +
2VVbchFZVVbdeJrZVVabeJrZVVaefJr Wﬁ)ot (1)

where E; and Ejqare the internal power dissipations
in a velocity discontinuity bc and within the
continually deforming region bed, W, and Wy, are
the rate of external work due to region opba and the
load from the foundation, respectively. In Eq. (1), the
total internal power dissipation F,,,, along all velocity
discontinuities is equal to the total rate of external
work W, in the mechanism. Since the associated
flow rule is used, the internal power dissipation along
the velocity discontinuities in the upper sand layer is
zero. In the clay, the internal power dissipation is
calculated as the product of the value of the cohesion
and the magnitude of the velocity-jump vector. By
solving Eq. (1), the specific expression for the upper
bound g, of the true ultimate bearing capacity can be
written as

BERD _ (& o)+ GN,(Ena) G =2 @)
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The upper bound ¢, is independent of the specific
weight of the clay. In the case of obtaining the upper
bound value using Eqs. (2)-(4), the values of three
parameters é: ,N and O have to be determined to
take the minimum value of g, in Eq. (2). Therefore,

when the following conditions are satisfied,
q,(&,n, o) takes the minimum value.
B/2
q
03 a f
| | %
| vy - Vs Hi

(b) Uniform sand layer

Fig. 5 Failure mechanism assumed in upper bound
analysis
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Accordingly, the upper bound value g can be

expressed as

q:mjn q0(§>n>a) (6)

Since it is very difficult to obtain analytical solutions
using Eq. (5), all possible combinations of &,7 and
o satisfying a kinematically admissible velocity
field are considered in order to take the minimum
value of the upper bound. Parameters ® and  in
Fig. 5(a) can be found based on the geometric
conditions, after values of £,1 and O are set.

The bearing capacity generally increases with the
depth of upper sand layer. As the upper sand layer
becomes relatively thick, the failure will be fully
contained within the upper sand layer. Thus, it is
needed to obtain the upper bound solutions calculated
by the failure mechanism within the uniform sand
layer. The failure mechanism within the uniform sand
layer used in this paper is assumed as shown in Fig.
5(b). The mechanism is symmetrical and the
logarithmic spiral is used for the region bed. Like the
above procedure, the upper bound g, for the uniform
sand layer is as follows:

qo(é,n)=§N, Em 7

—tan¢ cos(& —¢)
2 2cos2 & cosp(l+ 9tan” ¢)
><{(3tan¢cosn—sinn)exp[3(n’ —n—é)tan¢]+ 3tan¢cosE +siné}
N cos(& — ¢)sin r cos nexp[3(ﬂ 7177§)tan¢]
2cos? E cos(n+¢)

N, (§.m=

®

Therefore, the upper bound value g can be expressed
as

g=mingy(&,n) 9)

All possible combinations of & and n satistying
a kinematically admissible velocity field are
considered in order to take the minimum value of the
upper bound.
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FINITE ELEMENT ANALYSIS

The finite element method can be employed to
analyze the ultimate bearing capacity of two-layer
foundation soils and obtain an accurate
approximation of the true ultimate bearing capacity.
Although there are many sources of errors such as the
discretization of the continuum by finite elements, the
solution scheme and its incrementation, it 1is
considered that careful handling of the sources of
error makes the results of finite element analysis
closer to the exact solution. The commercial finite
element program ABAQUS (HKS 2001) was used to
analyze the ultimate bearing capacity. ABAQUS
solves problems with material non-linearity
effectively by employing a Newton-Raphson iterative
scheme with automatic incrementation.

Method of Analysis

In the analysis, both clays and sands are modeled
using the Drucker-Prager model. Unlike the Mohr-
Coulomb criterion, the Drucker-Prager model
considers the influence of the intermediate principal
stress (Chen and Saleeb 1994). In addition, the
Drucker-Prager model is mathematically convenient
to use in three-dimensional applications, as it
generates a smooth failure surface in stress space
(Desai and Siriwardane 1984). In terms of the stress
invariants I; and J, the Drucker-Prager model
without cap can be written as:

[T =T, —al, —k=0 (10)

where [; and J, are the first invariant of the stress
tensor and the second invariant of the deviator stress
tensor, respectively, and « and %k are model
parameters that can be related to the Mohr-Coulomb

strength parameters ¢ and ¢ for plain strain conditions.

In finite element analysis, the selection of boundary
conditions, mesh size and fineness are important
factors for obtaining reasonable results. In the
analyses, the effects of these factors were thoroughly
investigated in the plane-stain (2D) analyses to
determine a reasonable depth and width. Figure 6
shows a typical finite element mesh. The mesh was
composed of four-node, second-order, plane-strain
quadrilateral elements. The FE model was set in
symmetry. In this figure, the analytical condition is

H/B=1 and the number of elements is 3600. The
bottom boundary of the mesh was fixed and the
lateral boundaries were modeled with rollers. The
bottom and lateral boundaries were placed far enough
not to influence the bearing capacity and failure
mechanism. Every mesh used in the analysis was
made fine near the edge of the foundation. In every
case, we tried to use a finer mesh composed of eight-
node quadrilateral elements, but, following
convergence problems, we adopted four-node
quadrilateral elements. The foundation was modeled
as a rigid foundation with rough base, in which all of
the nodes under the footing have the same
displacement. The soil was modeled with an
associated flow rule (the yield function is equal to the
plastic potential function) to facilitate the numerical
solution. In order to obtain ultimate bearing capacity
values, a vertical displacement was applied to the
nodes below the footing while its horizontal
displacement was constrained to zero. The total load
was obtained as the vertical reaction force below the
footing. The average footing pressure was then
obtained by dividing the vertical load by the width of
the footing. In general, the load-settlement curves
obtained from FE analysis do not always show a
distinct point for determining of ultimate bearing
capacity. The characteristics of curves depend on the
failure mode such as general, local or punching shear
failure. Initially, the bearing capacity of the footing
was defined as the load at S/B=0.10, where S and B
are the settlement and the width of the foundation. In
some of the cases, however, a continuous increase in
bearing capacity was observed even at S/B=0.10.

2

ODB: s81p35c]
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Fig. 6 Finite element mesh
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Therefore, the vertical displacements were applied up
to S/B=0.15. Although it requires some degree of
judgment and experience for determining ultimate
bearing capacity from load-settlement curve, the
ultimate bearing capacity is defined using the load at
S/B=0.15 as one of the criteria in the analysis. In
order to consider more realistic stress conditions in
the soils, the FE analysis consists of two steps:
geostatic stress analysis and main analysis. The
geostatic analysis is performed to account for the
initial stress condition of the soils. After the geostatic
step is completed, the vertical displacement of the
foundation is generated in the main analysis. The
gravity loading of the soils induces small
deformations in the geostatic stress analysis. Thus,
small settlements exist prior to the main analysis. The
total settlement in the analysis is defined as the
settlement occurring in both the geostatic stage and
the loading stage. According to several preliminary
analyses using varying elastic moduli (£) and
Poisson’s ratios ( v), it was noted that as the elastic
modulus increases, the slope of the load-settlement
increases but it does not affect the ultimate bearing
capacity, provided F and v are in a reasonable range.

Results of Analysis

Figure 7 shows the relationship between the
normalized footing pressure qy/ y B and the
normalized settlement S/B for two-layer foundation
soils. It is noted that gy is the footing pressure at the
base of foundation. The internal friction angles of the
sand layer were 30° , 35° and 40° | and the
normalized cohesion ¢,/ v B was 0.5 for the three
cases. From Figs. 7(a)-(¢), as the normalized depth of
a sand layer H/B increases, q,/ v B also increases. It is
seen that q,/ v B tends to converge to a constant value,
as S/B increases for H/B=0, 1 and 2 in Fig. 7(a), for
H/B=0, 1, 2 and 3 in Fig. 7(b) and for H/B=0, 1, 2, 3
and 4 in Fig. 7(c). Except for the above cases, qi/ v B
increases gradually even at S/B=0.15. The condition
H/B=5 indicates the case of only a sand soil. As ¢
increases, the difference of bearing capacity between
H/B=4 and 5 becomes larger. It is found from Figs.
7(a)~(c) that for high values of internal friction angle
¢ in the sand layer, ¢ has more influence on the
increase of bearing capacity in two-layer foundation
soils.

Figure 8 shows the same relationship as Fig. 7, in
which the internal friction angle of the sand was fixed

m
>
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m
=
3
——H/B=0 —=—H/B=1

= I

|

A ]

> |

& v

v

(©) ¢$=40" ,c/yB=0.5

Fig. 7 Relationship between q/ v B and S/B from
finite element analysis
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®) $=35" ,c/yB=25

Fig. 8 Relationship between q/ vy B and S/B from
finite element analysis

(¢=35" ), and ¢,/ vyB was 1.5 and 2.5 for the two
cases. From Fig. 7(b) and Figs. 8(a) and (b), when the
normalized cohesion ¢,/ v B is larger, the starting
points between g,/ v B and S/B become almost the
same. In Fig. 8, as S/B increases, q,/ v B tends to
converge to a constant value only at H/B=0, 1 and 2.
It is generally observed that q,/ v B tends to converge
to a constant value with an increase of S/B, when ¢
is larger and H/B is smaller. Regarding the influence
of cohesion of the clay, the bearing capacity is
increased when ¢,/ v B increases from 0.5 to 1.5 for
¢ =35" inthe cases of H/B=0 1, 2, 3 and 4, as shown
in Figs. 7(b) and 8(a). For the cases that ¢,/ v B

increases from 1.5 to 2.5 for ¢ =35 (Figs. 8(a) and
(b)), the bearing capacities at H/B=0, 1 and 2 are
significantly increased and those at H/B=3 and 4 are
slightly increased. Therefore, it is found from Figs. 7
and 8 that the increase of the internal friction angle ¢
in the upper sand layer is more effective than that of
the cohesion ¢, in the lower clay, to increase the total
bearing capacity in two-layer foundation soils.

RESULTS AND DISCUSSION

The results of the ultimate bearing capacities
calculated by each method are shown based on the
internal friction angle ¢ of the upper sand layer, as
shown in Figs. 9-11. The horizontal and vertical axes
represent H/B and q,/ v B, respectively. In each figure,
the normalized cohesion ¢,/ v B of the clay is
increased from (a) to (c¢). Figure 9 shows the
comparisons between q,/ vy B and H/B, when ¢ is
relatively small ( ¢ =30" ). In Figs. 9(b) and (c), the
ultimate bearing capacities calculated by Yamaguchi
are excessively overestimated in comparison with
other methods. When ¢,/ v B is increased from (a) to
(¢) im Fig. 9, the ultimate bearing capacities
calculated by Meyerhof tend to be underestimated
compared with other methods except FEM. In Fig.
9(a), the ultimate bearing capacities from the upper
bound analysis using the failure mechanism for two-
layer foundation soils are a little larger than those
calculated by Okamura et al., but in Figs. 9(b) and (c),
the tendency is opposite. Overall, it is found that the
ultimate bearing capacities from the upper bound
analysis agree well with those calculated by Okamura
et al. in comparison with other methods. Regarding
the results from FEM, since the ultimate bearing
capacities are increased very little in the cases of
H/B=3.0 and 4.0 in Fig. 9(b) and H/B=2.0, 3.0 and
4.0 in Fig. 9(c), FE analysis tends to evaluate low the
ultimate bearing capacities compared to other
methods. The reason why the results obtained from
FEM evaluate low the ultimate bearing capacities
compared with other methods is mainly due to the
different assumptions between rigid-plastic and
elasto-plastic analyses. Since the failure mechanism
needs to be essentially assumed in the limit
equilibrium concept and upper bound analysis, the
validity of failure mechanism would be very
important. This is so because the analytical results are
mainly affected by the failure mechanism. In contrast,
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although the elasto-plastic FE analysis needs many
parameters and much computational cost in
comparison with rigid-plastic analysis, it would be
possible to obtain ultimate bearing capacities more
accurately from initial conditions by conducting a
careful handling of the sources of error. However, the
accuracy and stability of the analysis are very
dependent on the discretization of the continuum by
finite elements, the selection of an analytical model
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and the suitability of the method for solving material
non-linearity.

The horizontal line shows the upper bound value
calculated by the failure mechanism within the
uniform sand layer, as shown in Fig. 5(b). As
indicated in Fig. 5(b), the lower clay does not affect
the failure mechanism within the uniform sand layer.
Except for the case that the lower clay is very stiff
and H/B is relatively small, the bearing capacity of
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two-layer foundation soils would not actually exceed
that of uniform sand layer. The bearing capacity
calculated by the equation using the upper bound
method or the limit equilibrium method for two-layer
foundation soils continues to increase with the
increase of H/B, as shown in Fig. 9. Thus, we should
consider the comparison of bearing capacity obtained

from several methods roughly below the horizontal
line, although the horizontal line is the upper bound
value from the uniform sand layer. It is found from
Fig. 9(c) that the ultimate bearing capacities
calculated by all methods for two-layer foundation
soils are larger than the upper bound value obtained
from uniform sand layer. This indicates that all
methods for calculating the bearing capacity of two-
layer foundation soils are not applicable to this case,
because there is a possibility for overestimating the
bearing capacity of two-layer foundation soils.

It is observed in Fig. 10 that the ultimate bearing
capacities  calculated by  Yamaguchi are
underestimated compared with other methods in Fig.
10(a), but a different tendency is found in Fig. 10(c).
With an increasing sand layer, the ultimate bearing
capacities calculated by Meyerhof tend to be
overestimated compared with other methods in Fig.
10(a), but the opposite tendency is shown in Fig.
10(c). The ultimate bearing capacities from the upper
bound analysis using the failure mechanism for two-
layer foundation soils show good agreement with
those calculated by Okamura et al. In the cases of
H/B=3.0 and 4.0 in Figs. 10(b) and (c¢), the ultimate
bearing capacities from FEM are almost the same.
Thus, the results from FEM tend to evaluate low the
ultimate bearing capacity compared to other methods.
Additionally, it is confirmed that the failure
mechanism around the foundation is almost the same
at H/B=3.0 as at 40 in Figs. 10(b) and (c),
respectively. It is seen from Figs. 9-10(b) and (c) that
the ultimate bearing capacities obtained from FEM
are a little larger than the upper bound value obtained
from the uniform sand layer for the cases of H/B=
2.0 in Figs. 9(b) and (¢) and H/B=3.0 in Figs. 10(b)
and (c¢). The reason is depend on the assumption of
the failure mechanism within the uniform sand layer
used in limit analysis, as shown in Fig. 5(b) and the
determination of ultimate bearing capacity in the
load-settlement curve obtained from FEM. For the
load-settlement curve that does not tend to converge
to a constant value, if the point given by the
intersection of tangents to the initial and ultimate
portions of the curve is adopted as a ultimate bearing
capacity, it is possible to evaluate low the ultimate
bearing capacity than that at S/B=0.15.

Figure 11 shows comparisons between q,/ v B and
H/B, when ¢ is relatively large ( ¢ =40° ). AtH/B=
30 in Figs. 11(a) and (b), the ultimate bearing
capacities calculated by Yamaguchi tend to be
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underestimated compared with other methods.
Meyerhof’s  solutions tends to overestimate
excessively the ultimate bearing capacities at H/B=
2.0 in Fig. 11(a) and H/B=3.0 in Fig. 11(b). In this
figure, it is seen that the upper bound solutions using
the failure mechanism for two-layer foundation soils
agree well with those calculated by Okamura et al
among the various methods. Notice that the ultimate
bearing capacities obtained from FEM are larger than
the upper bound solutions only at H/B=4.0 in Figs.
11(a) and (b). This is because of the determination of
ultimate bearing capacity in the load-settlement curve
obtained from FEM. It is seen that the tendency of the
results obtained from FEM in Fig. 11 is different
from that in Figs. 9 and 10. This may be due to the
fact that the bearing capacity failure of two-layer
foundation soils mainly takes place in the upper hard
sand layer ( ¢ =40° ), thus the ultimate bearing
capacities are increased due to the easy propagation
of the failure. It is found from Figs. 9-11 that the
application range (the region below the horizontal
line) of the bearing capacity equation for two-layer
foundation soils becomes large as ¢ increases and ¢,/
v B reduces.

Therefore, although the upper bound solutions, i.e.,
minimum bearing capacities calculated by Eqs. (2)-
(4) for the two-layer foundation soils and Egs. (7)-(8)
for the uniform sand layer give the upper bound
values of the true ultimate bearing capacity, it is
considered that the upper bound solutions from two
failure mechanisms (Figs. 5(a) and (b)) proposed in
this paper can obtain relatively good values for the
analytical conditions shown in Fig. 4, comparing with
other methods. Upper bound solutions, in contrast to
limit equilibrium methods, do not need to introduce
certain concepts or assumptions, the necessary
parameters are simple and the theoretical background
is reasonable. The design charts from the upper bound
solutions obtained are described below for practice
use.

Figure 12 shows the relationship between q/ v B
and ¢/ v B for ¢ =30° , 35° and 40° from the
upper bound analysis. As the horizontal line shows
the upper bound value calculated by the failure
mechanism within the uniform sand layer, the
application range of the upper bound values obtained
from the failure mechanism of two-layer foundation
soils is roughly below the horizontal line. The upper
bound values beyond the horizontal line are also not
applicable, because these values exceed the upper
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Fig. 12 Relationship between g/ v B and ¢,/ vy B for
various friction angles from upper bound analysis

bound values from the uniform sand layer. It is found
that the application range is very small for ¢=30°

and becomes large when ¢ increases. Regarding the
estimation of the bearing capacity of two-layer
foundation soils from limit analysis, it is considered
that the smaller value of bearing capacities calculated
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by the failure mechanism of the two-layer foundation
soils (Fig. 5(a)) or calculated by that of the uniform
sand layer (Fig. 5(b)) should be adopted as a
simplified calculation. In addition, when the upper
bound solution from the failure mechanism within the
uniform sand layer is obtained, the normalized depth
of the failure mechanism /B is less than 2 for ¢
=30° , 35° and 40° . When the internal friction
angle ¢ of the upper sand layer and the normalized
cohesion ¢,/ v B of the lower clay are known, the
upper bound value of the true ultimate bearing
capacity can be readily obtained using these design
charts. Notice that the condition H/B=0 indicates the
case of only a clay soil.

Figure 13 shows the variation of the load spreading
angle o with the normalized cohesion ¢,/ v B from
the upper bound analysis. The angle « in the failure
mechanism of two-layer foundation soils increases
with increasing internal friction angle ¢ in the upper
sand layer, and the angle decreases when ¢,/ vB of
the lower clay increases. In particular, the decrease of
the angle from c./ v B=0.5 to 1.5 is more remarkable
than that from c¢,/y B=1.5 to 2.5, irrespective of H/B
and ¢ . It is also found that the angle is the largest for
H/B=4 and is the smallest for H/B=1 among all cases.

CONCLUSIONS

The ultimate bearing capacity of a rigid spread
foundation with rough base on a sand layer overlying
clay was investigated using the upper bound analysis,
the finite element program (ABAQUS) and existing
limit equilibrium methods. The ultimate bearing
capacities obtained from the upper bound analysis
and the program ABAQUS were compared with those
calculated from some limit equilibrium equations
proposed by Yamaguchi (1963), Meyerhof (1974)
and Okamura et al. (1998) for confirming the validity
of their application to practice.

The conclusions drawn from this study are
summarized as follows:

1. The ultimate bearing capacities calculated by
Yamaguchi (1963) are largely influenced by an
increase of ¢/ v B and are not dependent on an
increase of ¢ at all. Meyerhof’s solutions tends to
underestimate or overestimate bearing capacity for
the condition of H/B = 3.0, compared with those
calculated by the other methods. Therefore, it can be
concluded that Yamaguchi’s and Meyerhof’s
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Fig. 13 Variation of & with ¢/ vy B from upper
bound analysis

solutions are inadequate for estimating the ultimate
bearing capacity, because their solutions are not
consistent with varying conditions in two-layer
foundation soils.

2. The ultimate bearing capacities calculated by
Okamura et al. (1998), regarded to be the most
accurate of the considered equations showed good
agreement with the upper bound solutions. Within the
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bearing capacity obtained from the failure mechanism
of two-layer foundation soils does not exceed that
calculated by the failure mechanism of the uniform
sand layer, the authors suggest that the upper bound
solutions or Okamura et al.’s solution should be
applied for the estimation of bearing capacity in
practice (noting that their solutions may overestimate
the true ultimate bearing capacity).

3. The bearing capacity equation was proposed by the
kinematic approach of limit analysis and the upper
bound solutions were shown in the form of design
charts. Using these design charts, when the internal
friction angle ¢ of the upper sand layer and the
normalized cohesion ¢,/ v B of the lower clay are
known, the true ultimate bearing capacity can be
reasonably estimated with ease.

4. From the load spreading angle « in the failure
mechanism of two-layer foundation soils used in the
upper bound analysis, the upper sand layer is more
effective for spreading the footing load when ¢
increases and ¢,/ v B reduces. Therefore, it is
considered that fixing the load spreading angle for
various soil conditions is unfavorable for some
practical applications. In addition, it is very difficult
to estimate the load spreading angle in advance.

5. Although the bearing capacity calculated by the
equation using the upper bound method or the limit
equilibrium method in this paper continues to
increase with the increase of H/B, only FE analysis
can indicate the limit of the increase of bearing
capacity corresponding to the increase of H/B without
introducing concepts or assumptions.
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