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ABSTRACT: Granular piles improve the behavior of the soil by increasing bearing capacity, accelerate consolidation, 
reduce settlements, and mitigate liquefaction related damages by reinforcement and densification effects. Granular piles 
can be made to resist pullout or uplift forces by placing an anchor at the base and attaching the same by a cable or rod to 
the footing to transfer the applied pullout forces to the bottom of the GP termed Granular Pile Anchor (GPA). The 
elasto-plastic response of GPA in non-homogenous ground is presented considering the shear stress at the interface to 
be limited to the undrained strength of the soil. 
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INTRODUCTION 
 
 Granular piles offer a valuable technique under 
suitable conditions for increasing the bearing capacity of 
foundations and stability of embankments founded on 
soft ground, in reducing settlement and increasing the 
time-rate of consolidation. The utility of the granular 
piles is restricted as they can only transfer compressive 
loads and/or resist shear stresses.  

Granular piles can be made to resist pullout or uplift 
forces by a simple modification of placing an anchor at 
the base and attaching the same by a cable or rod to the 
footing to transfer the applied pullout force to the bottom 
of the GP. Such an assembly is termed a Granular Pile 
Anchor (GPA). Tests on model granular pile anchors in 
expansive and soft soils are reported by Kumar (2002 & 
2003). Granular pile treated expansive soil adjusts itself 
to changes in moisture better than an untreated-soil 
(Phani Kumar et al. 2004, Sharma et al., 2004 & 2005, 
Setty et al. 2000 and Hari Krishna et al. 2007). The 
application of reinforced geopiers for resisting tensile 
loads and settlement control was studied by White et al. 
(2001). Lillis et al. (2004) reported results from in situ 
tests on pullout response of GPA. Kumar et al. (2004) 
and Ranjan et al. (2000) present results from laboratory 
and field tests on pullout response of GPA in cohesive 
and cohesionless soils. Linear analysis of GPA was 
reported by Madhav et al. (2005 & 2008).  
 
 

PROBLEM DEFINITION 
 

A granular pile of length, L, and diameter, d, with 
the soil and pile material characterized by moduli of 
deformation Es and Egp, and unit weights of γs and γgp, 
respectively is considered (Fig.1). The Poisson’s ratio of 
the soil is νs. A force, Po, applied at the base of GPA is 
resisted by the shear stress, τ, acting along the periphery 
of the pile. The force and the stresses acting on and the 
displacements (upward movements) of the GPA are 
depicted in Fig. 2a. The shear stresses vary with depth, z. 
The displacements for a compressible pile increase with 
depth from a value of ρu0 at the top to ρuL at the tip.  

The stresses transferred to the in situ soil are shown  

 
 

Fig. 1 GPA under Pullout 
 
 



 
Vidyaranya, et al. 
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Fig. 2  Forces and Stresses acting on GPA and Soil.
 

 
 

Fig. 3 Variation of undrained shear strength with depth 
 
in Fig. 2b. In order to evaluate the upward displacements 
of the elements of the soil adjacent to the GPA due to the 
boundary stresses, τ, function of undrained shear 
strength of the soil. The undrained shear strength of the 
soil increases linearly with depth (Fig. 3). The non-
homogeneity factor, α, i.e. the rate of increase of 
undrained strength with depth is taken as 0.25. The GPA 
surface is divided in to ‘n’ elements of length, L (=L/n).  
The stress acting on a typical element, j, is τj. The 
displacement at the centre of an element, i, due to 
stresses acting on element, j, are obtained by the method 
described by Poulos and Davis (1980). 

Integrating numerically, the Mindlin’s equation 
(1936) for a point load in the interior of a semi-infinite 
elastic continuum over the periphery of the element, the 
displacement, ρs,ij, of the soil adjacent to the centre of the 
ith element due to stress, τj, acting on the element, j, is  
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where Is,ij – is the soil displacement influence coefficient. 
The total soil displacement, ρs,i, adjacent to node ‘i’ due 
to stresses on all the elements of the GPA, is obtained by 

summing up all the displacements at node ‘i’, due to 
stresses on elements j=1 to n. The soil displacements 
adjacent to all the nodes are collated to arrive at  
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where {ρs} and {τ} are respectively the displacement 
and shear stress vectors of size, n, and [Is] the 
displacement influence coefficient matrix of size nxn.  
 
 
DISPLACEMENTS OF GPA 
 

The vertical displacements of GPA are obtained 
considering it to be a compressible pile. Figure 4 depicts 
the stresses on an infinitesimal element of GPA of 
thickness, ∆z. Poulos and Davis (1980) and Mattes 
(1969) have established that lateral/radial stresses have 
negligible effect on the vertical displacements.  

The equilibrium of forces in the vertical direction 
reduces to 
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where σz is the normal stress in the GPA. The stress-
strain relationship for the GPA material, is 
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where εz and ρgp are respectively the axial strain and 
GPA displacement. For a homogenous GPA, Egp is 
constant. Combining Eqs. (3) and (4) and simplifying 
one gets 
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Equation (5) is solved along with the boundary 

conditions: z=0 (i.e. at the top of GPA) P=0 and z =L(tip 
of the GPA), P=P0 (the applied load). Since Eq.(5) 
 

 
 

Fig. 4 Stresses acting on an Infinitesimal Element 
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 cannot be integrated directly, its finite difference form is 
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where ρgp,i and τi are respectively the displacement at the 
centre of node ‘i’ and the shear stress on the interface of 
element, ‘i’, of the GPA.  

Equation (6) can be written for nodes i = 2 to (n-1). 
Invoking the first boundary condition, P = 0 implies σz = 
0 and hence εz = 0 leads to 
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where ρgp,1’ – is the displacement at the imaginary node 
1’ above the GPA. Equation (6) can now be written for 
node 1 as well. All the equations for nodes 1 to (n-1) are 
collated and written as  
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where [Igp] is the GPA displacement influence 
coefficient matrix, of size nx(n-1), 
 
 
COMPRESSIBLE PILE  
 

The soil and pile displacement equations are 
normalized with diameter, d, and undrained shear 
strength cu0 to get dimensionless quantities as 
 

Soil displacement 
equation 

Pile displacement 
equation 
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where        *ρρ =






d
s         *ττ =







uoc
  

But   the  compatibility  of   displacements  requires    
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The   pile  displacement  equation  is  written  as 
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which reduces to 
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Load, P0, at z = L, is expressed as 
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where ρn+1 is the displacement at the imaginary node 
below node ‘n’. The ultimate pullout load, 

)21(... 0 απ += uult cLdP . Normalizing P0 with 
uocLd ...π and 

the displacements with diameter, d, Eq. (14) becomes   
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where Eq. (15) can be written as  
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Equations 10, 12 & 16 are combined to solve for the 

shear stresses and the displacements, as 
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RIGID PILES  
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For rigid piles Eq. (17) reduces to Madhav and 
Poorooshasb (1989) as 
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Elasto-Plastic Response 
 

The shear stress, τi, on any element, ‘i’, cannot 
exceed the undrained strength, ))/.(1( Lzcuo α+ , i.e. 
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and the ith row in Eq. (19) is replaced with 
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and the set of equations solved. Yielding generally starts 
from the tip, and progresses towards the top. In some 
particular cases, yielding of the top element gets initiated 
after some elements in the lower part of GPA have 
yielded after some stage of loading. 
 
 
RESULTS 
 

The elasto-plastic behavior of GPA is studied by 
solving Eqs. (17) & (18) for the following ranges of 
parameters for both rigid and compressible piles for 
homogenous and non-homogenous conditions: L/d = 5, 
10, 20, 25, 50; Es/cu0 = 100, 200, 300, 500 & 1000; 
Egp/Es = 10, 20, 50, 100, 200, 500, 2000, 5000;  νs=0.5; 
non-homogeneity co-efficient, α=0 and 0.25. 
 
 
VARIATION OF SHEAR STRESSES  
 

The pullout load, P0, is applied in increments until 
shear stress along each elemental surface along the total 
pile length reaches the undrained shear strength 
corresponding to that depth. The variations of shear 
stresses with depth, z, at different P* values for a rigid 
pile with L/d=10, and Es/cu0 = 200 are shown in Fig. 5. 
The shear stresses are nearly constant with depth at small 
values of P* (< 0.3) and increase sharply near the tip as 
noted by Madhav and Poorooshasb (1989) for piles 
under tension and Poulos and Davis (1968) for piles 
under compression both behaving linearly. Yielding 
begins near the tip with increasing P* values and 
proceeds towards the top.  At P*= 0.4, the yielding starts 

at depth close to diameter‘d’ from the toe and increases 
steeply. The variation is nearly constant for homogenous 
and non-homogenous condition at smaller values of P*. 
At P*=0.98, the stress in the homogenous condition yield 
near the top of GPA and near constant with increasing 
depth. For the same pullout load the variation of the 
shear stress with depth increase steadily and increase 
steeply beyond z/L=0.7 as the stresses start yielding.   

Variations of shear stresses with depth (Fig. 6) for a 
compressible GPA with Egp/Es=100 and for the same 
parameters as for the rigid pile are very similar once 
again to those for the rigid pile. The differences in the 
normalized shear stress variations for homogenous and 
non-homogenous conditions increase with increasing 
values of P*. At smaller values of P*= 0.685 the stresses 
increases steadily up to 0.75 and then increase steeply to 
the maximum yield stress. The yielding of the stress 
proceed towards the top with increasing pullout load. At 
P*=0.999, the stresses starts yielding from a depth close 
to z/L= 0.45. The behavior of the variation of the stresses 
is similar in rigid pile and GPA with increasing pullout 
load but the variations are more with increasing depth 
for the GPA.    

The variations of the shear stress with normalized 
depth for P*=0.69 for compressible pile for different 
values of L/d and for Egp/Es = 100, Es/cu0=200 and νs 
=0.5 are presented in Fig. 7. Shear stresses at more 
number of elements or over longer lengths of the GPA 
yield for longer GPA than those for shorter ones. For L/d 
=50 the yielding starts at a depth z/L=0.45 and increase 
with depth. Shear stresses over more than fifty percent of 
the pile length have yielded for L/d of 50 at P*=0.69 
while only thirty percent of the pile length has yielded 

 

 
 
Fig. 5 Variation of τ* vs. z/L for L/d = 10 for Es/cu=200 
and νs= 0.5 with increasing P*-Rigid Pile 
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Fig. 6 Variation of τ* vs. depth for L/d = 10, Es/cu = 200, 
Egp/Es = 100 for νs = 0.5 for GPA 
 
elements for L/d of 5. Hence the shear stresses mobilized 
along the non-yielded elements are more for short GPA 
(L/d=5) and decrease at these depths with increasing 
values of L/d. 

The influence of the relative stiffness factor, K 
(=Egp/Es), on the shear stress variations with depth for P* 
of 0.69 is presented in Fig. 8 for L/d=10, Es/cu0=100, and 
νs=0.5.  

The differences in the shear stresses for homogenous 
and non-homogenous conditions decrease with 
increasing K. At K=10, more stresses have yielded at 
depth, z/L= 0.4 and increase with increasing depth. For 
increasing K values the yielding of the stresses decrease 
with depth. For K= 50 the yielding starts at a depth of 
0.65 and for K= 5000 it is at 0.85.  
 

 
 
Fig. 7 Variation of τ* vs. Depth for P* = 0.69, Egp/Es = 
100, Es/cu =200 and νs = 0.5-effect of L/d for GPA 
 

 
 
Fig. 8 Variation of τ* with depth for Es/cu = 100 and νs= 
0.5and L/d=10 - Effect of K(=Egp/Es) for GPA 
 
 
LOAD - DISPLACEMENT RESPONSES  
 

The displacements generated along the pile length are 
extrapolated to obtain the top and tip displacements 
considering the 1st, 2nd & 3rd elements for the top and n-2, 
n-1& nth elements displacement in GPA, respectively. 
The variations of the normalized load, P* (normalized 
with πd2cu0/4 to eliminate the effect of L/d in the 
normalization of pullout load) with normalized tip 
displacement, δ*= (ρ/d) for rigid and compressible piles 
are shown in Figs. 9 & 10 respectively for Es/cu0 =200 
and νs=0.5 for different ratios of L/d.  

The normalized displacements for a given P* 
increase with increasing values of L/d. The 
displacements generated in L/d = 5 at P*=30 are of the 
order 0.022. And the displacements generated in GPA 

increase with increasing L/d. For L/d=20, at P*= 80, the 
 

 
 
Fig. 9 Variation of P*

N with δ* for Es/cu= 200 and νs=0.5 
- Effect of L/d - rigid piles 
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Fig. 10 Variation of P*

N with δ* for Egp/Es =100, νs= 0.5, 
and Es/cu=200, – for Effect of L/d –GPA 
 
normalized displacements generated are close to 0.035. 
And for L/d =50, the P* increases to 210 and also the 
displacements are 0.04.  

Pullout load increases by about five folds and 
displacements by two folds with increase in L/d from 5 
to 50. Longer piles exhibit larger tip displacements 
compared to shorter ones at a given normalized pullout 
force. 

The normalized pullout force – tip displacement plots 
for GPA (Fig. 10) are very similar to those for rigid piles 
(Fig.9) except that the displacements are very large for 
GPA since the relative stiffness factor, K= 100.  

The displacements for L/d =5 are very negligible and 
are of the order 0.02 for P* = 20 and the displacements 
increase with increasing L/d. For  L/d =50 the 
displacements generated are close to  0.26 at a pullout 
load, P*=200.  

The influence of the Es/cu0 on the variation of tip 
displacement, δ* with P* is presented in Figs. 11 & 12 
for L/d = 10 for rigid piles and compressible GPA. The 
displacements generated at  Es/cu0=100 are of the order 
0.058 and decrease with increasing Es/cu0 and are close 
to 0.005 for Es/cu0 = 5000.  

The displacements generated for higher values of 
Es/cu0 are constant with increasing pullout load, P*. 
Displacements are very sensitive to Es/cu0 reducing by 
several orders of magnitude for Es/cu0 increasing from 
100 to 5,000.  

The effect of K (= Egp/Es) for L/d=10 on pullout load 
versus tip displacement plots is studied in Fig. 13. With 
increasing Es/cu0 the displacements reduce and the GPA 
behaves like an incompressible pile.  

The effect is similar to the rigid pile but the 
magnitudes of the displacements generated are higher to 
the rigid piles. For K (Es/cu0 ) =100 the displacements 
generated are close to 0.11 for P* = 1.0 and decrease to 
0.01 for P*=1.15.  

 
Fig. 11 Variation of P* with δ* for L/d = 10 & νs = 0.5 – 
Effect of Es/cu – Rigid Piles 
 

 
Fig. 12 Variation of P* with δ* for L/d = 10, Egp/Es= 50 
& νs= 0.5 –Effect of Es/cu-GPA 
 

 
Fig. 13 Variation of P* with δ* for L/d = 10, Es/cu=100- 
Effect of K (=Egp/Es) 
 
 
CONCLUSIONS 
 

An analysis of GPA is presented considering the 
GPA - in situ soil interface response to be elasto-plastic, 
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i.e. the interface shear stresses are limited to the 
undrained strength of the soil which increases linearly 
with depth. The elastic continuum approach of Poulos 
and Davis (1980) is extended to predict the pullout load 
– displacement responses of GPA.  A parametric study 
has been carried out and the results in the form of 
variations of normalized shear stress, displacements and 
of normalized axial uplift force with depth with relative 
stiffness factor, K (=Egp/Es) and Es/cu0 are presented for 
rigid and compressible piles. The salient conclusions are: 
1. Granular Pile Anchors (GPA) are very effective in 
transferring applied loads to strata at depth particularly if 
they are relatively long and/or more compressible.  
2. For relative stiffness factor K>1,000, a compressible 
GPA behaves like an incompressible or a rigid pile. 
3. The effect of non-homogeneity of strength profile on 
the response of GPA is significant. While the normalized 
load-displacement curves are close to each other for 
homogeneous and non-homogeneous cases, it should be 
remembered that the ultimate capacities with which the 
load is normalized are different for the two cases.  
4. GPA transfers larger shear stresses near the toe where 
the in situ strength is maximum in case of non-
homogeneous ground. 
5. The effect of non-homogeneity on normalized load – 
displacement response is particularly significant in case 
of more compressible GPA (K=10). 
 
 
REFERENCES 
 
Hari Krishna P. and Ramana Murthy V. (2007). In situ 

Heave Control of Model Walls Using Granular 
Anchor Piles. 13th ARC, Kolkota, India. Part-I, Paper 
No. 42. 

Kumar, P. (2002). Granular Anchor Pile System under 
Axial Pullout Loads. Ph.D. Thesis, I.I.T. Roorkee. 

Kumar, P., Ranjan, G. and Saran, S. (2003). GAP 
System for Resistance of Uplift Forces – A Field 
Study. Proc. Indian Geotechnical Conference, 
Roorkee: 597-602. 

Kumar, P., Ranjan, G. and Saran, S. (2004). Granular 
Pile System for Strengthening of Weak Sub-Soils –A 
Field Study. Proc. of ICGGE; IIT Bombay: 217-222.  

Lillis, C., Lutenegger, A.J and Adams, M. (2004). 
Compression and Uplift of Rammed Aggregate Piers 
in Clay. Geosupport: 497-507. 

Mindlin, R.D. (1936). Force at a point in the Interior of a  
 
 
 
 
 

Semi-infinite Solid. Physics 7: 195. 
Madhav, M.R., and Poorooshasb, H.B. (1989). Pile 

Displacement Due to Tensile Loads. Indian 
Geotechnical Journal, Vol.18 (1): 48-53. 

Madhav, M.R., Vidyaranya, B. and Sivakumar, V. 
(2005). Ultimate Pullout Resistance and 
Displacements under Working Loads of GPA,  
Keynote Lecture, Indian Geotechnical Conference, 
Ahmedabad: 45-52. 

Madhav, M.R., Vidyaranya, B. and Sivakumar, V. 
(2008). Linear Analysis and Comparison of 
Displacements Granular Pile Anchors. Ground 
Improvement Journal, Issue 161: 31- 41.  

Mattes, N.S. (1969). The Influence of Radial 
Displacement Compatibility on Pile Settlement. 
Geotechnique.Vol.19: 157-159. 

Phani Kumar, B.R., Sharma, R.S., Srirama Rao, A.  and 
Madhav, M.R. (2004). Granular Pile Anchor 
Foundation (GPAF) System for Improving the 
Engineering Behaviour of Expansive Clay Beds. 
Geotechnical Testing Journal, ASTM, Vol.27, No.3: 
1-9. 

Poulos H.G., and Davis, E.H. (1968). “The settlement 
behavior of single axially loaded incompressible 
piles and piers”.Geotechnique, 18,351-371. 

Poulos, H.G. and Davis, E.H. (1980). Pile Foundation 
Analysis and Design. John Wiley and Sons, New 
York: 397. 

Ranjan, G. and Kumar, P. (2000). Behaviour of Granular 
Piles under Compressive and Tensile Loads. 
Geotechnical Engineering, J. of SEAGS, Vol.31, 
No.3: 209. 

Setty Narayanaswamy, K.R., Ravi Shanker, A.U. and 
Narasimha Reddy, G.N. (2000). Uplift Behaviour of 
Granular Pile-Anchors in Expansive Soils. Indian 
Geotechnical Conference, Bombay: 305-306.  

Sharma, R.S., Phanikumar, B.R. and Nagendra. (2004). 
Compressive Load Response of Geogrid Reinforced 
Granular Piles in Soft Clays. Canadian Geotechnical 
Journal, Vol.41: 187-192. 

Sharma, R.S. and Phanikumar, B.R. (2005). Laboratory 
Study of Heave Behaviour of Expansive Clay 
Reinforced with Geopiles. Journal of Geotechnical & 
Geo-environmental Engineering, ASCE, Vol. 131, 
No.4:512-520. 

White, D., Wissmann, K., and Lawton, E. (2001). 
Geopier Reinforcement for Transportation 
Application. Geotechnical News: 63-68. 


