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ABSTRACT: This paper reports on a research study that investigated a robust artificial neural network (ANN) and 
linear combination enhanced by genetic algorithms (LC-GA) technique for analyzing groundwater level (GL) in a plain 
area of the Saitama prefecture in Japan. The back propagion algorithm is used in ANN model. The input sets were 
selected by employing an analytical technique, the cross-correlation of monthly GL. The major objective of this study 
was to develop a reliable groundwater level fluctuation analysis system by means of GL prediction, which have 
different fluctuation patterns in a plain area generating trend forecasts for the forthcoming GL monitoring and 
management. In general, the LC-GA model gives better prediction in testing period than the ANN model even though it 
has out range from training data. It was found that by inserting one time lag gives better prediction results for ANN and 
LC-GA models. 
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INTRODUCTION 
 
Groundwater is the most important water resource for 

many countries. Groundwater is not only used for 
domestic and municipal consumption, but also for 
agricultural and industrial water supply. Groundwater 
management approaches based on a variety of simulation 
and prediction techniques and control measures have 
been proposed and adopted by researchers and relevant 
authorities to address the problem of providing long-
term countermeasures against land subsidence and the 
protection of groundwater resources in the region.  

Land subsidence can be considered to be one of the 
most prominent groundwater problems that cause serious 
damage, especially to infrastructure and the environment. 
The losses due to the irreversible phenomenon of 
subsidence are always found to be huge in social, 
financial and environmental terms. Because of the 
severity of the damage, maintaining groundwater level 
(GL) becomes a critical issue. In other words, 
groundwater resource development should be performed 
under controlled conditions. 

The GL at any point is stochastically distributed. 
When the pumping rate at some points is increased, the 
relationship among them changes. The effect of 
increasing groundwater abstraction can be evaluated by 
investigating the observed value and estimated value 

from other observation wells. A stochastic model, such  
as artificial neural networks (ANN) can be used to 
approach the GL problem. ANN is robust methods 
applied in this research for analyzing groundwater level 
fluctuation. The hybrid linear combination (LC) and 
genetic algorithm (GA) and called LC-GA is proposed 
method in this study. The result of ANN and LC-GA is 
compared. 

Several researchers have carried out the application 
of ANN to the groundwater problem. ASCE Task 
Committee (2000a, 2000b) presented concepts and the 
application of ANN in hydrology. Ranjithan et al. (1993) 
presented an ANN-based screening tool for identifying 
critical realizations from a large set of uncertainty in 
hydraulic conductivity parameter. ANN was developed 
and used to estimate aquifer parameter values (Balkhair, 
2002). Maier and Dandy (2000) evaluated the ANN for 
the prediction and forecasting of water resource 
variables. ANNs have also been applied in groundwater 
management problems (Coppola Jr. et al., 2003). 
Lallahem et al. (2005) evaluated groundwater level in 
fractured media using a neural network. Coulibaly et al. 
(2001) simulated water table fluctuation using an ANN 
with hydrometeorological data as input. Daliakopoulos 
et al. (2005) evaluated several different neural networks’ 
architecture for groundwater level forecasting. 

In addition, the applications of GA for groundwater  
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problems have increased recently. Prasad and Rastogi 
(2001) used GA coupled with a finite element method to 
estimate groundwater recharge. Giacobbo et al. (2002) 
investigated the feasibility of using genetic algorithms 
for estimating the parameters of groundwater 
contaminant transport. Katsifarakis et al. (1999) 
combined the boundary element method and GA to find 
optimal solutions to commonly encountered groundwater 
flow and mass transport problems. Morshed and 
Kaluarachchi (1998) compared ANN and GA in flow 
and transport simulation. 

In the present study, backpropagation artificial neural 
networks (BPANN) and linear combination with genetic 
algorithms (LC-GA) are applied to analyze the 
groundwater level. The selection of data as input set was 
conducted by using cross-correlation between input 
candidates and desired output. The input set contains 
five of the GL from other observation wells which are 
the highest fifth of correlation coefficient with respect to 
the GL studied. The objective of this study was to 
develop a reliable groundwater level fluctuation analysis 
system by means of GL prediction to generate trend 
forecasts for the forthcoming monitoring and 
management period, based on observed data from the 
past eight years. For an overall development of the basin, 
a continuous forecast of the GL is required to effectively 
use any simulation model for water management (Nayak 
et al., 2006). 
 
 
MATERIAL AND METHODS 

 
Genetic Algorithms 
 

Genetic algorithms (GA) are introduced by Goldberg 
(1989). The GA is stochastic search techniques based on 
the mechanism of natural selection and natural genetic 
(Gen & Cheng, 1997). The solution to a problem solved 
by genetic algorithms uses an evolutionary process. The 
inspiration for GA came from nature and survival of the 
fittest. In a population, each individual has a set of 
characteristics that determine how well suited it is to the 
environment. Survival of the fittest implies that the 
“fitter” individuals are more likely to survive and have a 
greater chance of passing their “good” features to the 
next generation. The algorithm begins with a set of 
solutions (represented by chromosomes) called the 
population. Solutions from one population are taken and 
used to form a new population. This is motivated by a 
hope that the new population will be better than the old 
one. Solutions, which are then selected to form new 
solutions (offspring), are selected according to their 
fitness. This is repeated until some condition (for 

example number of populations or improvement of the 
best solution) is satisfied. 

In this study GA was used to optimize the weight or 
coefficient of the linear combination (see Eq. 1). The 
input set of LC-GA model used as same as ANN model 
selected by cross correlation of inputs and target of GL 
interest. 

 
y =α1* x1+α2* x2 +α3* x3 +α4* x4 +α5* x5      (1) 

 
where y is output model, and x1,….,x5 is the variable 
input having the highest value of correlation coefficient 
with respect to the desired output. The α1,..., α5 is a 
coefficient or weight of the linear combination. 
 
Artificial Neural Networks 

 
An artificial neural network is different from a 

conventional system such as an analytical or statistical 
model. An ANN is a network consisting of an arbitrary 
number of very simple elements called nodes. Each node 
is a simple processing element that responds to the 
weighted inputs it receives from other nodes (Lee et al., 
2004). A common type of ANN consists of three layers: 
an input layer is connected to a hidden layer, which is 
connected to an output layer (Fig. 1). 

The arrangement of the nodes is referred to as the 
network architecture. Various network architectures are 
available. One of them that are applied in much research 
is a multi-layer backpropagation neural network. The 
first operation is the feed forward operation. During this 
operation each node j receives incoming signals from 
every node i in the previous layer. Each incoming signal 
(yi) associates with a weight (wji). The net input, xj, to 
node j is a sum of all the incoming signal times the 
weight as described in Eq. (2).  

 
∑=
i

jiij wyx                  (2) 

 
Note that this includes an extra node we call the bias 

node, which is assumed to have a value of 1 at all times. 
The weight on this extra node is called the bias as a 
threshold value. 

The outgoing signal yj, which is a non-linear function, 
is produced by a transfer function of its input. The most 
commonly used transfer or activation function is the 
sigmoid function. The sigmoid function is, in essence, a 
smooth version of a step function. It is zero for low input. 
At some point it starts rising rapidly and then, at even 
higher levels of input, it saturates. The characteristic of a 
sigmoid function is differentiable everywhere. The 
logistic sigmoid function takes the form of: 
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Fig.1 Topology of three-layer feed forward Artificial Neural Network 
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The nonlinear nature of this sigmoid transfer function 

plays an important role in the performance of the ANN. 
Other functions can be used as long as they are 
continuous and possess a derivative at all points.  

The backward pass is concerned with error 
computation and weight update. The algorithm that is 
usually used in this operation is a backpropagation 
algorithm. Backpropagation artificial neural networks 
(BPANN) were introduced by Rumelhart et al. (1986), 
and a good description of the BPANN in groundwater 
problems can be found in Ranjithan et al. (1993) and 
ASCE Task Committee (2000a, 2000b), among others. 

The backpropagation algorithm is a gradient descent 
procedure used to minimize an objective function (error 
function) E. When the calculated outputs are carried out, 
the next step is to calculate the difference or error 
between calculated outputs and desired (target) output. If 
the overall error value drops below some predetermined 
threshold, then the model is completed. If not, error 
backpropagation, one of the procedures to use adjusted 
weights, begins. This means that the error value is then 
propagated backwards through the network, and small 
changes are made to the weights in each layer. The sum-
squared error value is given by: 

      
 ( )∑ −=

k
kk otE 5.0                       (4) 

The error, E, for one training sample is a function of 
the desired output, t, and actual output, o. The goal of the 
training process is to minimize this sum-squared error 
over all training patterns. 

There are several variations of the backpropagation 
algorithms; the gradient descent with momentum is 
applied in this research. Without momentum a network 
may get stuck in a shallow local minimum. With 

momentum, a network can slide through such a 
minimum. This technique is one of the simplest and most 
widely used first-order parameter optimization 
procedures. The new vector Wk+1 is adjusted according 
to:  

11 −+ +−= kkkk WgWW αη                             (5) 
 
where Wk  and gk are weight and error gradient with 
respect to weight for k-th iteration. The learning rate (η) 
and momentum (α) are selected by trial and error 
procedure. The momentum term determines the 
proportion of the update step due to the current gradient 
versus the last update step. The training parameter was 
0.5 for learning rate and 0.9 for momentum factor. The 
maximum iteration or epoch was 5000 with error goal of 
1exp (-5). 
 
 
STUDY AREA 

 
The study area was Saitama prefecture, one of the 

local governments in Japan, the area of which is located 
in the middle of the Kanto district, north of Tokyo. The 
area of Saitama prefecture is 3,799km2, and the 
population is about 7 million. The lowland and upland 
occupy about 60% of the entire prefecture, but about 
97% of the population is concentrated on the lowland 
and upland regions. Therefore, there are many activities 
in the area, including groundwater abstractions for many 
purposes. There are an estimated number of more than 
7000 pumping wells distributed all over the Saitama 
Plain to extract groundwater for drinking, industrial and 
agricultural purposes, and about 67 observation wells for 
monitoring purpose. Some locations have more than one 
observation well such as Urawa, it has two wells (see Fig. 
2). The 67 observation wells are in lowland and upland 
areas, with the deepest well at 700m and the shallowest 
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Fig. 2 Map of the observation wells in Saitama prefecture 

 
at 35m below the land surface. 

The study area has been divided into four 
groundwater control areas, each covering an 
approximately equal land area of similar hydrologic 
characteristics. The demarcations for these control areas 
are mostly the administrate boundaries of cities, towns 
and villages. The control areas are located in eastern, 
central, western and north-eastern area (see Fig. 2). Each 
control area has one observation well, and the four 
observation wells were studied and analyzed. 

 Saitama prefecture is part of Northern Kanto basin. 
The geology of the basin is classified into the alluvial 
and dilluvial deposits of the Quaternary period, Tertiary 
deposits and basement of the Miocene (Sato, 1995). 
Sedimentary rock in this area is composed of surface 
loam, clay, silt, sand and gravel. The aquifers from 
which water is abstracted mostly contain sand and gravel. 

The main problem in the past related to groundwater 
abstraction was land subsidence. Land subsidence 
remains an important environmental issue, particularly in 
the extensive plain region in Japan such as Saitama, the 
Northern Kanto Plain. Land subsidence has induced 
indirect or compound damage (Murakami et al. 2002). In 
the 1950s, the land subsidence in the Kanto Plain was 
most severe in the southern part of Saitama prefecture, 
and gradually spread over areas such as the northern part 
of Saitama prefecture (Tanaka 2004). 

In order to control and stop land subsidence and 
prevent the lowland from disaster, the national 
government has restricted groundwater withdrawal for 

industrial use since 1961 by the Industrial Water Law, 
and for air-conditioning use since 1963 by the Law 
Controlling Pumping of Groundwater for use in 
Buildings (Endo 1992). The guidelines for preventative 
measures for land subsidence in the northern Kanto basin 
were formulated in 1991, and Saitama prefecture local 
government has developed the GL monitoring system 
(Sato, 2000). 

After implementing the regulations, the GL in 
Saitama prefecture was mostly stable. Figure 3 shows 
the relationship between monthly groundwater pumping, 
GL and land subsidence over 18 years (1986–2003) at 
Urawa (Saitama City). The pattern of land subsidence 
was similar to GL, and the GL pattern followed the 
pumping rate. In other words, we can say that land 
subsidence is very much influence by groundwater 
pumping. A spike of subsidence or GL is due to the 
overpumping period. 
 
 
RESULTS AND DISCUSSION 
 
Correlation Among Observed Wells 

 
One of the most important steps in the development 

of any prediction model is the selection of appropriate 
input variables. When the relationship to be modeled is 
not well understood, an analytical technique, such as 
cross-correlation, is often employed. The analysis of 
monthly GL of candidate inputs and desired output was 
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Fig. 3 Trend of GL and land subsidence due to the groundwater pumping in Saitama city (adopted from Annual report 
of land subsidence in Saitama prefecture, 2003) 

 
performed by investigating the relationship between 
them using cross-correlation. This study was in the plain 
area with a case study of four observation wells 
representing the control area. The five surrounding wells 
with the best correlation coefficient, r, with respect to 
well studied were chosen as input for the ANN and GA 
model (see Table 1). The inputs have high correlation to 
the desired output. The depths of the inputs are almost in 
the same regime to the output desired (see Table 2). 
 
ANN and GA Analysis 
 

It is important to determine the appropriate network 
architecture in order to obtain satisfactory results. After a 
number of trial and error methods performed for 
backpropagation algorithms, 3 hidden nodes with 5 input 
nodes and 1 output node were considered, and the 
maximum epoch was 5000. The activation function used 
is the logistic sigmoid function. Normally, the data set 
for ANN needs to be divided into three parts. The first 
part is for the training, the second part for validation and 
the third part for testing. However, the length of data is 
not big enough, so only two parts are considered in this 
study, namely training and testing. The only difference 
between testing and validation is that if the error of the 
validation increases, the training is stopped. In this study 
these two terms were used synonymously. The length of 
training set was 60 samples over five years (from 1997 
to 2001), and the testing set was 36 samples over three 
years (from 2002 to 2004). 

Table 3 provides the performance of prediction 

results for the training and testing period in terms of the 
determination coefficient (R-squared) and root means 
squared error (RMSE), respectively. During the training 
period, the results mostly indicate that ANN is a 
potential technique for GL prediction. However, the 
performances were not so good for some prediction in 
testing period. It was found that Model 2 and Model 3 
mostly gave better results during the testing period, 
except for Tokorozawa2. It can be inferred that a time 
lag of (t-1) and (t-2) of wells concerned was a significant 
contribution to the ANN calculation model. The Urawa2 
that has a high GL fluctuation and the depth2 of the 
inputs are in the same range or regime that why it can 
give an excellent prediction result in the testing period. 
For the observation wells Koshigaya Hgs1, 
Tokorozawa2 and Washimiya2, the testing period 
contain the values out of the range used for the training 
period. In this case, ANN usually cannot generate a good 
result for prediction in the testing period. ANN 
performance is constrained by the quantity (and quality) 
of data available (Coppola et al., 2003). The poor 
prediction can be resulted when the testing data contain 
values outside the range of those used for training (Maier 
and Dandy, 2000). ANNs are unable to extrapolate 
beyond the range of data used for training (Flood and 
Kartam, 1994; Minns and Hall, 1996; Maier and Dandy, 
2000). 

Figure 4 provides a scatter plot of the prediction 
deviation from the observed GL during the testing period 
using input Model 2. The deviation is denoted as a 
difference between calculated and observed GL. Positive 
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Table 1 The correlation coefficient between inputs and desired output 
 

The correlation coefficient (r) Input 
Koshigaya Hgs1 Urawa2 (U2) Tokorozawa2(T2) Washimiya2 (W2) 

X1 Kasukabe Ch2 0.969 Urawa1 0.954 Tokorozawa1 0.961 Kuki 0.958

X2 Yashio1 0.965 Kawagoe 0.899 Kasukabe Ch3 0.942 Satte1 0.945

X3 Yashio2 0.958 Urawa Hgs 0.888 Koshigaya Hgs1 0.935 Gyoda1 0.917

X4 Kasukabe Ch3 0.955 Toda2 0.871 Kasukabe Ch2 0.930 Koshigaya Hgs3 0.871

X5 Tokorozawa1 0.954 Kawashima2 0.837 Iwatsuki 0.926 Kurihashi 0.912
 

Table 2 The well depth of inputs with the correlation coefficient presented in Table 1 
 

The well depth (meters) Input 
Koshigaya Hgs 1(315) Urawa2 (250) Tokorowaza2 (240) Washimiya1 (415) 

X1 Kasukabe Ch2 315 Urawa1 150 Tokorozawa1 415 Kasukabe Ch1 600 

X2 Yashio1 300 Kawagoe 200 Kasukabe Ch3 215 Kawashima1 300 

X3 Yashio2 150 Urawa-E 228 Koshigaya Hgs1 315 Koshigaya 600 

X4 Kasukabe Ch3 215 Toda2 142 Kasukabe Ch2 315 Tokorozawa1 415 

X5 Tokorozawa1 415 Kawashima2 190 Iwatsuki 250 Koshigaya Hgs1 315 
Urawa2(250) : Urawa1 observation well with depth of 250 meters. 

  
 Table 3 Performance of ANN model using for five years training and three years testing period 

 
Model 1 Model 2 Model 3 No. Wells 

Training Testing Training Testing Training Testing 
  R-squared 

1. Koshigaya Hgs1 0.9810 0.5990 0.9815 0.8470 0.9831 0.8427 
2. Urawa2 0.9888 0.9036 0.9922 0.9341 0.9793 0.9708 
3. Tokorozawa2 0.9960 0.7816 0.9555 0.6399 0.9533 0.5807 
4. Washimiya2 0.9472 0.4185 0.9035 0.6516 0.9309 0.6582 
  RMSE 

1. Koshigaya Hgs1 0.1572 0.2465 0.1555 0.3285 0.2115 0.3104 
2. Urawa2 0.1279 0.3007 0.1294 0.2643 0.1923 0.1681 
3. Tokorozawa2 0.2993 0.7734 0.5583 0.8288 0.4835 0.6788 
4. Washimiya2 0.3778 0.2955 0.3618 0.2591 0.3157 0.2469 

Model 1: using inputs best 5 having best relation to desired output 
Model 2: using inputs best 4 plus one step time lag (t-1) of well studied 
Model 3: using inputs best 3 plus one step time lag (t-1) and (t-2) of well studied 

 
deviation values indicate that the calculation 
overpredicts GL, whereas negative deviation values are 
under predicted. Overprediction denotes that the 
calculated is a more positive depth than observed, and 
underprediction means that an observation peizometric 
head is more positive than predicted. In generally, the 
outputs model were overpredicted. The deviations are 
mostly less than ± 1 meter, except for Washimiya 2, 
which lay on 1.5 meters. It can be said that the 
calculations model was acceptable for predicting the GL 
fluctuation.  

Table 4 shows the performance of monthly GL 
prediction in terms of R-seq and RMSE, respectively. 
GA calculation used 100 population, five-string input, 60 
samples (five years) for the training period, and 36 
samples (three years) for the testing period, same as 
ANN analysis. The three input Models were also applied 
to the LC-GA approach. In general, LC-GA  gave a 
satisfying prediction result for the training and testing 
period. Model 2, that had input of the best four in 
correlation and one time lag x(t-1) of the wells studied, 
had slightly better results than the other models in  
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Fig. 4 Prediction deviation from observed GL during testing period using input Model 2 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 5 The weight parameter (α) of the four observation wells for Model 2 

 
Table 4 Performance of LC-GA model using for five years training and three years testing period 

 
Model 1 Model 2 Model 3 No. Wells 

Training Testing Training Testing Training Testing 
  R-squared 

1. Koshigaya Hgs1 0.9714 0.7502 0.9773 0.7837 0.9772 0.7830 
2. Urawa2 0.9813 0.8851 0.9847 0.9320 0.9624 0.9654 
3. Tokorozawa2 0.9471 0.6896 0.9441 0.7037 0.9403 0.6729 
4. Washimiya2 0.8617 0.7703 0.8794 0.8649 0.8796 0.8638 
  RMSE 

1. Koshigaya Hgs1 0.2057 0.1980 0.1919 0.1927 0.1919 0.1929 
2. Urawa2 0.2150 0.4124 0.1927 0.3379 0.2553 0.3182 
3. Tokorozawa2 0.2433 0.3792 0.2571 0.3789 0.2595 0.3838 
4. Washimiya2 0.5278 0.4047 0.4817 0.3976 0.4817 0.3991 

 
training and testing period. It means that the time lag  
(t-1) gave a significant contribution to the calculation. 
The values of weight or coefficients (α) of each input of 
the four observation wells using Model 2 are shown in 
Fig. 5.  The general tendency shows that the input with 

the highest correlation to the target has biggest weight 
values.  

For all Models used, the RMSE were about 0.5m in 
the training and testing periods. If we compare the 
RMSE values, the LC-GA model and ANN model 

-3

-2

-1

0

1

2

3

0 6 12 18 24 30 36

Time (months)

De
vi

at
io

n 
fro

m
 o

bs
er

ve
d 

(m
)

Koshigaya Hgs1 Urawa2
Tokorozawa2 Washimiya2

0

0.1

0.2

0.3

0.4

0.5

0.6

X1 X2 X3 X4 X(t-1)

W
ei

gh
t v

al
ue

s Koshigaya E1
Urawa2
Tokorozawa2
Washimiya2



 
Affandi and Watanabe 

 

Koshigaya E1
13
15
17
19
21
23

0 12 24 36 48 60 72 84 96

G
LF

 (m
)

Observed

ANN

LC-GATraining Testing

Urawa2
5
7
9

11
13
15

0 12 24 36 48 60 72 84 96

G
LF

 (m
)

Observed

ANN

LC-GATraining Testing

Tokorozawa2
56

58
60

62
64

66
0 12 24 36 48 60 72 84 96

G
LF

 (m
)

Observed

ANN

LC-GATraining Testing

Washimiya2
26
28
30
32
34
36

0 12 24 36 48 60 72 84 96

Time (months)

G
LF

 (m
)

Observed

ANN

LC-GATraining Testing

 
Fig. 6 Comparison of prediction results to observed values of ANN and LC-GA models for training and testing period 
using input Model 

  
have not so big different performance results except for 
Tokorozawa2, the LC-GA is better than ANN model. 
Figure 6 shows the comparison results of prediction to 
observed values for training and testing period using 
input Model 2 for LC-GA and ANN methods. It is clear 
that LC-GA still can approach the pattern of fluctuation 
in testing period even though the testing samples are out 
side the of training data. 

 CONCLUSION 
 

In this paper, a stochastic model as a potential 
method for analyzing GL has been investigated by using 
an ANN and LC-GA model. The monthly GL fluctuation 
from four observation wells in a plain area of Saitama 
prefecture was analyzed. The forecasting results of the 
ANN and LC-GA model were studied for monthly GL 
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fluctuation. In general, the prediction from ANN and GA 
indicate that they can provide satisfactory predictions 
even for short monthly GL data observation. The 
performance evaluation criteria, the determination 
coefficient (R-squared) and the RMSE can be used as 
indicators of accuracy for the model evaluated. 

The input Model 2 had better results than others. 
Prediction results suggest that input Model 2 can be a 
good arrangement of the data input for analyzing GL 
fluctuation using ANN and LC-GA. It indicated that a 
one time lag included in the data input made significant 
contributions to the model. From calculating the results, 
the LC-GC was in general slightly better than the ANN 
model. This result gives significant information for local 
governments to conduct GL monitoring. To build a 
monitoring system using the ANN or LC-GA model, 
other input parameters such as rainfall, stream discharge 
and pumping rate should be considered to derive results 
that are more precise. 
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