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ABSTRACT: This paper pertains to prediction of hydraulic conductivity of soil used as clay liners using artificial 
neural networks based on soil classification test results like Atterberg’s limit, grain size and compaction characteristics.  
Feed forward back propagation neural network has been used and trained with different combination of input 
parameters of laboratory test results available in literature. Statistical performances criteria like root mean square error, 
correlation coefficient, coefficient of determination and overfitting ratio are used to compare different neural network 
models, the available statistical model and the results obtained using group method of data handling (GMDH) neural 
network. The neural network models are found to be more efficient and reliable compared to statistical model.  
Identification of important soil parameters affecting the hydraulic conductivity of soils is discussed.  A model equation 
is presented with weights of the trained neural network as model parameter.   
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INTRODUCTION 

Compacted clay in isolation or in combination with 
geo-membrane liners are used as hydraulic barrier in 
waste containment facilities. It is required to have 
desired hydraulic conductivity of the clay liners for 
proper functioning of the containment system and as per 
standard it should be less than 10-7cm/sec. The hydraulic 
conductivity (coefficient of permeability) of soil varies 
with many factors such as soil density, molding water 
content, degree of saturation, void ratio, composition, 
soil structure, permanent properties etc. interdependent 
complexly with each other (Lambe and Whitman 1976).  
The hydraulic conductivity of soil can be predicted using 
hydraulic radius theories (Lambe and Whitman 1976), 
empirical relationship (Carrier and Beckman 1984), 
capillary models and statistical models (Wang and 
Huang 1984; Benson et al. 1994).  Kozeny-Carman 
equation (Lambe & Whitman 1976), which is developed 
assuming soil pores as pipes and taking into account 
tortousity of the flow, pipes and specific surfaces is also 
frequently used.  However, the main difficulty in using 
original Kozeny-Carman equation lies in determining the 
specific surface of soil. Though specific surface can be 
estimated or measured, in geotechnical engineering 
practice it is generally not used, as there is no ASTM 
standard to find the same for soil (Carrier 2003). Chapuis 
and Aubertin (2003) have used the Kozeny-Carman 

equation for fine-grained soil by estimating specific 
surface of soil from liquid limit. Carrier and Beckman 
(1984) presented a semi-empirical correlation for 
permeability of soil based on liquid limit (LL), plastic 
limit (PL) and void ratio of soil based on some field and 
laboratory data.  Wang and Huang (1984) identified that 
bentonite content, liquid limit, plastic limit, fineness 
modulus, effective and mean diameter controls the 
permeability of bentonite mixed soil. Benson et al. 
(1994) presented a stepwise regression statistical model 
based on field measurement of hydraulic conductivity 
and other soil properties for natural soil used for clay 
liners at different sites. They suggested that factors like 
plasticity index (PI), gravel content (Gr), clay content 
(C), initial degree of saturation (Si) and weight of 
compactor governs the hydraulic conductivity of 
compacted clays.   

There are numerous studies for development of 
equations based on statistical models correlating the 
index properties of soil with its permeability. These 
types of equations/functions are known as Pedotransfer 
functions and mostly used by agricultural and 
environmental scientists (Wosten et al. 2001). The 
Pedotransfer functions can be defined as predictive 
functions of certain soil properties from other easily-, 
routinely-, or cheaply-measured properties (McBratney 
et al., 2002).  
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Application of artificial neural network (ANN) in 
civil engineering problems is getting popular due to its 
reliable predictive capability in complex problems 
(Maier and Dandy 2000; Shahin et al. 2001; Zaheer and 
Bai 2003; Das 2005). ANNs are not very different from 
statistical methods, but it has the ability to develop a 
model/correlation based on the input and output data 
only (Maier and Dandy 2000). 

 There are no fixed rules for developing an ANN 
model, even though a general framework can be 
followed based on previous successful applications in 
such problems. As such, there is a need to explore their 
successful application to new problems from the 
experience gained, to frame some guidelines for future 
applications.    

The statistical performances used for comparing 
different ANN models and other empirical models 
developed with the statistical/empirical analysis are 
based on correlation coefficient (R) or coefficient of 
determination/efficiency (R2) between the predicted and 
observed values. But, sometimes, higher values of R 
may not necessarily indicate better performance of the 
model because of the tendency of the model to be biased 
towards higher or lower values (Das and Basudhar 2005). 
The R2 value compares the modeled and measured 
values of the variable and evaluates how far the network 
is able to explain total variance in the data set. However, 
this may not identify the region where the model is 
deficient and cannot explain in overall, whether the 
model under predicts or over predicts compared to other 
models.  

With the above in view, ANN models have been 
presented for prediction of hydraulic conductivity of soil 
based on laboratory data results. The data available in 
literature (Wang and Huang 1984) has been taken and 
the ANN has been implemented using Matlab 
(MathWork Inc., 2001) and its neural network toolbox 
(Demuth and Beale 2000). The results of the ANN 
models have been compared with the available statistical 
method and the results obtained using GMDH neural 
network. After obtaining the results from the ANN 
modeling, the trained weights has been used to carryout 
sensitivity analysis in finding out the important input 
parameters. Model equations have been developed based 
on the weights of the ANN model and GMDH neural 
network.   
 
 
METHODOLOGY 
 
Artificial Neural Network 

A typical structure of ANN consists of a number of 
processing elements or neurons, that are usually arranged 

in layers; an input layer, an out put layer and one or 
more hidden layers (Fig 1). The input from each 
processing element in the previous layer is multiplied by 
an adjustable connection weight (wji). At each neuron, 
the weighted input signals are summed and a threshold 
value (bj) is added. The combined input (Ij) is then 
passed through a nonlinear transfer function (f()) to 
produce the output of processing element. Hence the 
output (yk) from the output node can be written as Eq. 
(1). 
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The learning process is nothing but the nonlinear 
optimization of the error function to find out the above 
weights and biases.  

 
Fig. 1 Typical architecture of a Neural Network 

 
Successful application of ANN depends upon factors 

like number of hidden nodes, data division, data 
normalization, transfer function, learning algorithm etc. 
In the present study three layers (one hidden layer) back 
propagation neural network is used. The number of 
hidden layer neurons is determined through a trial- and-
error process and the smallest number of neurons that 
yield satisfactory results (based on performances criteria) 
is used. In the present investigation as only limited data 
could be collected, they are divided randomly into 
training and testing set, without any validation data set. 
All the variables (inputs and output) are normalized in 
the range   [-1, 1] before training. The network is trained 
(learning) with Levenberg-Marquardt (LM) algorithm as 
it is efficient in comparison to gradient descent back 
propagation algorithm (Demuth and Beale 2000; Goh et 
al. 2005).   
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The biggest challenge in successful application of 
ANN is when to stop training. If training is insufficient 
then the network will not be fully trained, where as if 
training is excessive then it will memorize the training 
patter or learn noise. So it will not generalize for new set 
of data. Methods like early stopping or cross validation 
can be used to avoid overfitting of ANN models 
(Basheer 2001; Shahin et al. 2002).  In the present study 
as the data points are limited; data for cross validation 
could not be considered, so early stopping criteria has 
been used.   

 
Group Method of Data Handling (GMDH) 

 
Group Method of Data Handling (GMDH) 

algorithms represent sorting-out methods that can be 
used for analysis of complex objects having no definite 
theory (Madala and Ivakhnenko 1994). Most GMDH 
algorithms use the polynomial basis functions and the 
connectivity configuration is not limited to adjacent 
layers like ANN. Such generalization of network's 
topology provides optimal networks in terms of hidden 
layers and/or number of neurons so that a polynomial 
expression for dependent variable of the process can be 
achieved consequently. When constructing a GMDH 
network, all combinations of the inputs are generated 
and sent into the first layer of the network. The outputs 
from this layer are then classified and selected for input 
into the next layer with all combinations of the selected 
outputs. If there are m number of inputs then there are 
m(m-1)/2 number of neurons in 1st layer and number of 
neurons grows exponentially with number of layers. This 
process is continued as long as each subsequent 
layer(n+1) produces a better result than layer(n). When 
layer (n+1) is found to not be as good as layer(n), the 
process is halted. The details of the method have been 
described in Madala and Ivakhnenko (1994). 
Comprehensive testing of GMDH implemented by 
Dolenko et al. (1996) proved that it is a powerful tool for 
mathematical modelling that can be used to solve a wide 
variety of different real-life problems. The most 
pronounced feature of GMDH is that it can choose the 
really significant input variables among dozens of these, 
thus actually reducing the dimension of the solved 
problem. However, they notice that GMDH is hardly 
suitable for very large problems with a great number of 
inputs which are nearly equally significant and the order 
of polynomial grows exponentially with number of 
layers.  

 
 
 
 

Data Base and Preprocessing 
 
The data used in this study to calibrate and validate 

the neural network models were obtained from the 
literature and includes laboratory measurement of 
permeability and the corresponding soil parameters 
(Wang and Huang, 1984). The data base consists of total 
57 cases describing the gravel (Gr), sand (S), silt (Si) and 
clay (C), specific gravity (G), liquid limit (LL), PL, grain 
size D50 and D10, percent by weight of particles smaller 
than 0.001 mm (F0.001), coefficient of uniformity (Cu), 
fineness modulus (FM), void ratio at 95% compaction 
(e95), optimum moisture content (OMC), maximum dry 
density (MDD) and corresponding permeability (kl).  But 
42 data points are considered for the present study as 
other data points does not have all the above parameters. 

Table 1 shows the maximum, minimum and average 
values of the above parameters used in the present study. 
The data points are divided randomly with 32 data as 
training set and 10 data as testing set.  The results of the 
different ANN models developed are presented as 
follows.  

 
Table 1  Results of different ANN models for prediction 
of hydraulic conductivity of soil comparing the R2 values  
 

 Parameters Maximum Minimum Average 
Gravel (%) 20 0 8.67
Clay (%) 84 10 38.69
Silt (%) 83 3 30.33
Sand (%) 81 0 22.85
G 2.87 2.69 2.75
LL (%) 495 24 243.21
PL (%) 47 10 32.64
Log(D50) -0.32 -3.46 -2.09
Log(D10) -2.66 -4.42 -3.72
FM 3.55 0.37 1.96
Log Cu 3.79 0.26 2
F0.001 (%) 71 5 30.45
OMC (%) 32.5 8 21.9
MDD 
(kN/m3) 19.33 12.65 15.72
e95 1.25 0.45 0.83
Log kl -5.347 -10.602 -8.205
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 Fig. 4  The observed hydraulic conductivity vs. 
predicted hydraulic conductivity for ten iterations 
 

RESULTS AND DISCUSSION 
 
Wang and Huang (1984) presented a stepwise 

regression model (Eq. 2) for prediction of hydraulic 
conductivity of the soil to be used as clay liners, based 
on the above data.  

 
 
where the kl  is the hydraulic conductivity of clay liners 
and is correlation is expressed in Log 10 kl

  as it has less 
skewness value compared to that data taken as  kl . 

Figure 2 shows a typical stage of ANN modeling 
showing the reduction in error due to training and testing 
data. It can be seen that as the number of epoch 
(iteration) increases there is decrease in error during 
training but for testing set data initially there is decrease 

in error up to certain iteration then after the error goes on 
increasing or remains constant.  The correlation between 
predicted and observed value of soil permeability for 
training and testing data with 100 iterations is shown in 
Figure 3.  It can be seen that the correlation coefficient 
(R) value for training data is 1.0 where as for testing data 
it is 0.756. This shows poor generalization of the model 
for data other than the training set.   

 
Fig. 2  Performances of proposed model during training 
and testing 
 

Figure 4 shows the agreement between predicted and 
observed permeability value when the network training 
is stopped after ten iterations. Though there was decrease 
in R (0.962) value for training set, the results of testing 
phase suggest that ANN model was capable of 
generalization and gave very good prediction (R = 
0.914) for testing set. This is known as early stopping 
criteria i.e the training is stopped when testing phase 
error increases even though error during training phase 
may goes on decreasing.  
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 Different ANN models are developed with different 
sets of input variables to find out the ‘best’ model 
(Basheer 2001; Shahin et al. 2002). For the present study 
it is observed that optimum results are found with two 
hidden layer neurons. Some of the successful ANN 
models are summarized in Table 2. The different models 
as described in Table 2, are compared in terms of 
correlation coefficient (R), coefficient of determination 
(R2), root mean square error (RMSE) value and 
overfitting ratio. The overfitting ratio is defined as the 
ratio of RMSE value during testing and training. The 
overfitting value close to one shows good generalization 
of the model. From Table 2, it can be seen that the 
performances of ANN model depends upon the input 
parameters. Based on R value (0.98) during training 
Model -4 is found to have good predictions; however it 
shows very poor prediction for testing data signified by 
high overfitting ratio (2.04). The other models are found 
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Fig. 3: The observed hydraulic conductivity vs. 
predicted hydraulic conductivity for hundred iterations  
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to have good generalization with overfitting ratio 
varying from 1.02 to 1.30. Though Model -5, 8 and 9 are 
found to have very close values of R, RMSE and 
overfitting ratio, Model -9 is the ‘best’ model having 
high values of R for training (0.977) and testing (0.961), 
minimum RMSE values (0.362) for testing data and 
minimum overfitting ratio (1.02).  So the Model-9 with 
eight (8) inputs  (C, Gr,LL,PL,D50, D10, Cu, and FM), two 
(2) hidden layer neurons and one(1) output (Log10kl) 
variable described as a 8-2-1 ANN architecture, can be 
considered as the ‘best’ model.  

The R values as per statistical model i.e. Equation 2 
(Wang and Huang 1984) for the training and testing data 
are found to be 0.929 and 0.903 respectively (Table 2). 
From Table 2 it also can be seen that as per R values, all 
the ANN models considered for training data and 
Models 1,2,5,8 and 9 for testing data are more efficient 
than the statistical model. From Table 2 it can be seen 
that, Models 5, 8 and 9 are more efficient compared to 
other ANN models, having high values of R2 for both 
training and testing data. Comparing with statistical 
model the R2 values (0.862 and 0.897) are less than that 
of Models 5, 8, and 9.  As per R2 values also, Model-9 
found to be the most efficient model. It is noteworthy to 
mention that in statistical model, both training and 
testing data were used for model development where as 
ANNs are not trained with testing data. The weights and 
biases of the final network are presented in Table 3. The 
weights and biases can be utilized for selection of 
important input parameters and framing an equation 
based on ANN model.  

The GMDH was developed with the same inputs as 
per Model 9. It was observed that the optimum value is 
obtained after 5th layer with RMSE values as 0.221 and 
0.400 during training and testing respectively (Table 2). 
It can be seen that the RMSE values are comparable to 
that of ANN values, but the ovefitiing ratio is very high 
compared to ANN and hence poor generalization.  

 
 

SELECTION OF IMPORTANT INPUT VARIABLES  
 
The ANN is data driven approach unlike statistical 

approach and the important inputs are selected based on 
the performances of the ANN models or by sensitivity 
analysis using Garson’s algorithm (Goh 1994). The 
different methods for selection of input variables, used in 
the present study are discussed below:  

 
Correlation Criteria (Cross correlations) 

 
 The Pearson correlation coefficient is defined as one 

of the variable ranking criteria in selecting proper inputs 

for the ANN (Wilby et al. 2003; Guyon and Elisseeff 
2003). The linear relationship between xi and y is defined 
in terms of Pearson coefficient as: 

cov designates the covariance and var the variance.  The 
estimate of the R(i) is given as  
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Correlation criteria have been used extensively in 

water resources engineering to select the suitable input 
variables (Wilby et al. 2003). High value of Ri of an 
input with the output indicates good correlation between 
the corresponding input and the output. However, 
correlation criteria can detect only linear dependencies 
between input variables and the output.  

 
Garson’s Algorithm 

 
Garson (1991) proposed a method of partitioning the 

neural network weights to determine the relative 
importance of each input variable in the network which 
has been modified and used by Goh (1994), Shahin et 
al.(2002) etc. The input-hidden and hidden-output 
weights are partitioned and the absolute values of the 
weights are taken to select the important input variables. 
The details of the algorithm with an example have been 
described in   Goh (1994). 

Table 4 shows the cross correlation of inputs with the 
Log10kl value. From the table it can be seen that Log10kl 
is highly correlated to LL value (cross correlation value 
0.88) followed by clay content (C), D10, PL and Cu. It 
can also be observed that FM (cross correlation value 
0.05), Gr and D50 are poorly correlated to Log10kl values.  
The sensitivity analysis for the model, as per Garson’s 
method, is presented in Table 5.  The LL is found to be 
the most important input parameter followed by Cu, D10, 
Gr, PL, FM, C and D50.   

Wang and Huang (1984) statistical model also 
considers LL, PL, D50 and D10 as important input 
parameters. Similarly as per the GMDH it was observed 
that the important Gr and LL are more important 
followed by D10, FM, C, PL, Cu and D50.  

From the above results it can be seen that using the 
above sensitivity analysis method LL is found to be the 
most important parameters in predicting Log10kl value. 
The relative ranking of other parameters are found to  
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Table 2 Results of different ANN models for prediction of hydraulic conductivity of soil 
 

Correlation coefficient 
(R) 

Coefficient of 
determination (R2) 

RMSE  value ANN 
Models 

Model Inputs 

Training Testing Training Testing Training Testing 

Over 
fitting 
ratio 

Model 1 LL,PI,D50,D10,O
MC, MDD 

0.962 0.914 0.924 0.736 0.460 0.598 1.30 

Model 2 LL,PI,D50,D10,O
MC,MDD, e95

0.962 0.914 0.923 0.736 0.460 0.598 1.30 

Model 3 LL,PI,D50,D10, e95 0.945 0.892 0.892 0.743 0.548 0.589 1.075

Model 4 C, LL,PI,D50,D10, 
e95

0.980 0.808 0.96 0.64 0.342 0.698 2.04 

Model 5 C, Gr, LL,PL, 
D50, D10, Cu, 
FM,F0.001

0.977 0.955 0.954 0.891 0.358 0.384 1.072

Model 6 C, LL,PL, D50, 
D10,Cu, FM 

0.949 0.867 0.899 0.738 0.531 0.595 1.120

Model 7 C, LL,PI, D50,D10, 
Cu, FM 

0.949 0.865 0.899 0.738 0.529 0.596 1.127

Model 8 G, LL,PI, 
D50,D10, Cu, FM 

0.976 0.947 0.953 0.892 0.362 0.382 1.055

Model 9 C, Gr, LL,PL, 
D50,D10,Cu, FM 

0.977 0.961 0.955 0.903 0.355 0.362 1.02 

GMDH C, Gr, LL,PL, 
D50,D10,Cu, FM 

    0.221 0.40 1.81 

Statistica
l model 

LL,PL, Log10D50, 
Log10D10, 

0.929 0.903 0.862 0.789 0.619 0.534  

 
 
 

Table 3 Weights and biases for hydraulic conductivity of soil  
 

Weights Biases Neuron 

Input 1 Input 2 Input 3 Input 4 Input 5 Input 6 Input 7 Input 8 Output bhk b0

Hidden 
neuron 1 

(k=1) 

0.1081 0.04 -0.590 -0.078 -0.026 0.438 -0.437 -0.134 1.017 -0.012 
 

-0.207
 

Hidden 
neuron 2 

(k=2) 

-0.091 0.470 -0.813 -0.199 -0.116 -0.148 -0.448 0.066 1.012 
 

0.298 
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Table 4  Cross correlation between inputs and the measured hydraulic conductivity 
 

 C Gr LL PL D50 D10 Cu FM Log 10kl

C 1.00 -0.16 0.93 0.77 -0.49 -0.65 -0.79 -0.17 -0.75
Gr   1.00 -0.01 0.04 0.11 0.12 0.46 0.25 0.19
LL     1.00 0.74 -0.28 -0.69 -0.55 0.06 -0.88
PL       1.00 -0.46 -0.74 -0.61 -0.11 -0.62

D50        1.00 0.36 0.74 0.47 0.05

D10         1.00 0.47 -0.15 0.71
Cu          1.00 0.45 0.36
FM            1.00 -0.21

Log 10kl              1.00
 
 
Table 5 Relative Importance of different inputs as per 
Garson’s algorithm 

 
Inputs Relative 

importance 
Ranking of inputs 

as per relative 
importance 

C 4.86% 7 
Gr 11.07% 4 
LL 33.25% 1 
PL 6.34% 5 
D50 3.15% 8 
D10 14.97% 3 
Cu 21.32% 2 
FM 5.03% 6 

 
vary with the methods used. So there is need for further 
study in this respect to interpret the connection weights 
for finding the important input variables. 

 
 

ANN MODEL EQUATION FOR THE HYDRAULIC 
CONDUCTIVITY BASED ON TRAINED NEURAL 
NETWORK  
 

After the ANN is trained, a model equation can be 
established with the weights as the model parameters. 
The mathematical equation relating the input variables 
and the output can be written as, 

 
 
 
 
                                                                              
                                                                                 (5) 

 

 
where, Log10 kl n is the normalized (in the range -1 to 1 in 
this case) Log 10 kl value,  

b0 = bias at the output layer;  
wk = connection weight between kth neuron of hidden 

layer and the single output neuron; bhk = bias at the 
kth neuron of hidden layer;  

h = number of neurons in the hidden layer;  
wik = connection weight between ith input variable and kth 

neuron of hidden layer;  
Xi = normalized input variable i in the range [-1, 1] and 
f sig = sigmoid transfer function.     

 
Using the values of the weights and biases tabulated 

in Table 3 the following expression can be written to 
finally arrive at a correlation of hydraulic conductivity of 
soils with the input parameters. 

 
A1 =  -0.012 + 0.1081 C + 0.04 Gr -0.5907LL -

0.0783PL-0.0257D50 + 0.4384D10 -0.4367Cu – 0.1341 
FM      (6) 

 
A2 =  0.2984 + 0.0913 C + 0.4699 Gr -0.8136LL -

0.1988PL-0.1157D50 - 0.1475D10 -0.4484Cu + 0.0664 
FM                                                                               

 (7) 
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The Log 10 kln value as obtained from Eq. 11 is in the 
range [-1, 1] and this needs to be denormalizeld as,  

 
Log 10 kl = 0.5 (Log 10 kl n +1) (Log10 k l max- Log 10 kl                 

min) + Log 10 kl min                                            (12) 
 

where, Log 10k l max and Log 10 k l min are the maximum and 
minimum values of Log10kl respectively in the data set.  

 
 

CONCLUSIONS 
 
The following conclusions can be drawn from the 

above studies: 
(1) The generalization of the model could be 

improved by early stopping criterion. The overfitting 
ratio found to vary from 1.02 to 1.3 for different models 
considered here except Model -4.   

(2) The developed ANN model is found to be more 
efficient compared to available statistical models based 
on R, R2 and RMSE both for training and testing data. 
The ANN model was also found to be better than 
GMDH as per overfitting ratio. 

(3) Sensitivity analysis using cross correlation 
method, Garson’s algorithm approach and GMDH reveal 
that liquid limit (LL) is the most important parameter for 
hydraulic conductivity of clay liners. The ranking of 
other input parameters are found to be different for 
different sensitivity methods.  

(4) A model equation is presented for prediction of 
hydraulic conductivity of soil, with the weights and 
biases obtained from the ANN model.  
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