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ABSTRACT: An efficient analytical approach is proposed to calculate the settlement of a pile group under vertical 
loads. The proposed approach is based on the superposition of the displacement of individual pile. In the superposition 
calculation, an interaction factor, which was determined using the technique by Muki and Sternberg, is employed to 
facilitate the analysis of pile groups subjected to static vertical loads. The proposed interaction factor can consider the 
strengthening effect of intervening piles. The solution of the proposed approach is compared with other existing 
solutions. Their difference in estimating the behaviour of pile groups is investigated. Finally, numerical examples on 
two pile groups are presented to discuss the influence of dimensionless pile and soil parameters on the behaviour of pile 
groups. The results show that the proposed approach gives a more reasonable analysis on pile groups. 
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INTRODUCTION 
 
Over the years, the reliable prediction of pile group 

displacement at working load remains a major problem 
in civil engineering especially in lowland areas where 
pile groups are widely used. Static response of pile 
groups has been investigated by using a variety of 
empirical, analytical, and numerical techniques. Analysis 
of pile groups can be conducted in two ways: one is 
computer-based direct analysis of the whole group; 
another one is approximate solution using superposition 
of interaction factors. 

Currently, the approach available for the direct 
analysis of axially loaded pile groups falls into four main 
categories: (1) simplified analytical methods involving 
separation of loads carried by shaft and base (e.g. 
Randolph, 1977); (2) integral equation methods (also 
known as the boundary element method), employing 
either load-transfer functions to represent the pile-soil 
interaction (e.g. Coyle & Reese, 1966; Kraft et al., 1981) 
or elastic continuum theory to represent the soil mass 
response (e.g. Butterfield & Banerjee, 1971; Banerjee, 
1970; Poulos & Davis, 1980); (3) finite element methods 
(e.g. Desai, 1974; Valliappan et al., 1974; Balaam et al., 
1975; Ottaviani, 1975; Jardine et al., 1986; Liang, 2003), 
in which a variety of constitutive soil models can be 
utilized, and such factors as soil nonhomogeneity and 
anisotropy can be taken into account; (4) the variational 

methods (Shen et al, 1997, 1999, 2000; Shen & Teh, 
2002). 

The direct analysis is preferable because it is accurate 
within the validity of the assumptions and provides 
extensive information. However, all the aforementioned 
methods have limitations. For example, a 3D finite 
element analysis is generally too expensive to get its 
application in the practical engineering. A criticism on 
the load transfer method is that the model does not take 
proper account of the continuity of the soil mass. The 
integral equation method is relatively accurate and 
rigorous; however, this method still requires a large 
amount of computer storage and subsequently long 
computational time for pile groups with large sizes. 

In order to overcome these limitations, an efficient 
and straightforward approach for pile group analysis 
based on the principle of superposition and the 
interaction factor concept has been proposed (Poulos, 
1968; Banerjee & Driscoll, 1978; Randolph & Wroth, 
1979; Poulos & Davis, 1980; Caputo & Viggiani, 1984; 
Bilotta et al., 1991; Mandolini & Viggani, 1997; Guo & 
Randolph, 1999). This simplified method provides an 
efficient means of computing the pile-pile interaction. 
However, it should be mentioned that the prevailing 
interaction factor approaches, due to the neglect of the 
strengthening effect of intervening piles, enlarge the 
interaction factor and hence lead to an overestimation of 
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the settlement of pile group (El Sharnouby & Novak, 
1990). 

In this paper, the interaction factor for pile group 
analysis is reexamined and the aforementioned limitation 
for conventional calculation of the interaction factor is 
removed by using a fictitious pile method which was 
proposed by Muki and Sternberg (1970). Comparisons 
between the proposed approach and the available results 
are presented and their difference in predicting the 
behaviour of pile groups is investigated. Parametrical 
studies are also presented to describe the influence of the 
governing parameters on the load distribution and 
displacement of the pile group. 
 
 
TWO-PILE INTERACTION ANALYSIS 

 
In this section, a mathematical formulation is 

presented for the analysis of interaction factor between 
any two piles in a group under vertical loads . As 
shown in Fig. 1, let {

0P

}0, , ,x y z  be a rectangular 
Cartesian coordinate frame spanning the homogeneous 
semi-infinite elastic soil medium . Two embedded 
piles in the group denoted by  and  are assumed 
to have the same length L, diameter d, and circular 
cross-sectional region 

B
1B′ 2B′

zΠ (0 < z < L). The center-to-
center spacing of the two piles is denoted by S. 

Following the technique of Muki and Sternberg of 
these problems, the embedding soil medium is extended 
throughout the half space and two fictitious piles, *1B  
and *2 , are introduced at their original locations (see 
Fig. 1). The Young’s modulus *E  of each fictitious pile 
is equal to the difference between those of the real pile 
and the extended soil, i.e., 

B

 
* p sE E E= −         (1) 

 
where pE  is the Young’s modulus of the real piles, and 

sE  is the Young’s modulus of soil. 
We treat the extended soil B as a three-dimensional 

elastic continuum which is represented by material 
constants sE and sμ . In contrast, the two fictitious piles 

 and  are regarded as one-dimensional elastic 
continua as far as their constitutive laws and 
equilibrium conditions are concerned. Considering the 
identity of any two piles in the group, only the 
embedded pile 1 and the corresponding fictitious pile 

 will be considered in the subsequent analysis. 
Apparently,  is governed by the stress-strain relation 
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Fig. 1  The model of pile group 

 
 
where A  is the cross-sectional area of the pile,  is 
the scalar axial force of the fictitious pile  and 

* ( )P z

*1B

* ( )zε is the associated axial strain. Consideration of 
vertical equilibrium for *1B  yields the differential 
equation: 
 

* ( )
( ) 0

dP z
q z

dz
+ = (0 )z L≤ ≤  (3) 
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where is the “bond force” per unit pile-length 
exerted by the extended soil on the fictitious pile  at 
depth z. The fictitious pile 1 is also subjected to the 
external axial force  and , concentrated 
within the terminal cross-sections and

( )q z
*1B

* (0)P * ( )P L
0Π LΠ , 

respectively. Here  is the portion of applied force 
transmitted to the fictitious pile 1 directly, and 
 is the bond-force exerted by extended soil B  on 

the fictitious pile 1. We adopt the requirement that the 
axial strain 

* (0)P
(0)P

* ( )P L

* ( )zε  in the fictitious pile 1 be equal to that 
of the center point in the cross-section zΠ  in the 
extended soil. Then the axial strain * ( )zε  in the 
fictitious pile 1 can be written as 
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where the strain influence functions ( )(1, ) ( , ) 1,2j
z z jε ξ =  

represent respectively the vertical strains of the semi-
infinite soil at depth  along the axis of real pile 1 due 
to a uniform circular load over the cross-section 

z
ξΠ  in 

the position of pile j, acting in the positive z-direction, 
and the resultant applied force having unit magnitude. 
The influence functions (1, ) ( , )j

z zε ξ  may be obtained by 
integrating Mindlin’s solutions (Mindlin, 1936). 

With the aid of Eqs. (2) and (3), Eq. (4) can be 
rewritten as 
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Eq. (5) is a Fredholm integral equation of the second 

kind, and the solution of which furnishes the unknown 
function  (the axial force along the fictitious pile 
1). This integral equation is readily amenable to a 
numerical solution. Once  has been found, the 
solution for the vertical displacement, , of pile 1 in 
the half space of the extended soil can be obtained as 
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where ( )(1, ) ( , ) 1,2jw z jξ =  are the settlement influence 

functions having the similar definition with (1, ) ( , )j
z zε ξ  

which can be obtained by integrating Mindlin’s 
solutions. 

On the other hand, for the analysis of the single pile 
case, we can rewrite Eqs. (5) and (6) as follows 
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where * ( )P z′  is the axial force along the fictitious pile 
of the single pile, and ( )w z′ is the vertical displacement 
of the single pile. 

At this stage the pile head displacements for both a 
single pile and a two-pile group have been formulated, 
with due account of the pile strengthening effect. 
Therefore, according to the definition by Poulos (1968), 
the interaction factor α  between two identical piles 
under vertical loads is expressed as 

 
(0) (0)

(0)
w w

w
α

′−
=

′
                                                     (9) 

 
where  and  are the pile head displacements 
for a two pile group and a single pile, respectively. 
Several interaction factors are presented by Poulos & 
Davis (1980). However, the interaction factors are 
sometime overestimated. There are two reasons for this. 
Firstly, they were calculated ignoring the strengthening 
effect of intervening piles. Secondly, the number of 
elements was too small which may induce an error. For 
these reasons, the present method is employed to 
introduce an alternative interaction factor. 
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When there are similarly loaded neighboring piles, the 
overall displacement of a pile may be obtained by 
superimposing the individual displacements (Cooke, 
1974), that is, for larger groups, the individual 
interaction factor may be superposed to yield the total 
settlement. Thus, for a group of n  identical piles, the 
settlement of any pile in the group is given by 
superposition, as 

(0)kw k

 

0 0
1

(0) (0) (0)
n

k j k j
j
j k

w w P wα
=
≠

′ ′= +∑ kP

n

  

                ( 1, 2,... )k =                                           (10) 
 

where 0 jP  is the load on the head of pile j  and k jα  is 

the interaction factor between piles andk j . 
For a pile group with a rigid cap, all pile settlements 

are equal, i.e., 
 

(0)   ( 1, 2,... )k cw w k= = n

0

                                       (11) 
 

where is the settlement of pile group cap. Also, for 
vertical load equilibrium, 

 cw

 

0
1

n

j
j

P P
=

= ∑                                                              (12) 

 
Eqs. (11) and (12) give 1n+  simultaneous equations 

that can be solved for the unknown load distribution on 
individual piles and the settlement of pile group. 
 
 
COMPARISON WITH EXISTING SOLUTIONS 

 
To investigate the strengthening effect of intervening 

piles, comparisons were made with the results obtained 
by Poulos (1968) and Butterfield ＆ Banerjee (1971) for 
pile groups embedded in a homogeneous, isotropic linear 
elastic half-space. The pile cap is assumed to be rigid 
and not in contact with the ground. 

The dimensionless parameters of interests here are 
( )0 /j cP Gw d , 0 /j avP P , /p sE E , /L d and , in which 
 the shear modulus of soil; 

/S d
G = 0 /j avP P  is the 
normalized vertical load on pile head where the average 

load is calculated by ; 0
1

/
n

av j
j

P P n

              
  

   (a) 2 pile group     (b) 3 pile group 

 

        
 

 (c) 2×2 pile group         (d) 3×3 pile group 

 

 
 

（e）4×4 pile group 

 

 

=

= ∑ /p sE E = relative 

stiffness of pile to soil;  = slenderness ratio and 
 = pile spacing ratio. In the comparative numerical 

study, the following standard values are adopted: 
, 

/L d
/S d

/p sE E = ∞ sμ =0.5, =2.5 and /S d /L d =25. It   
（f）5×5 pile group 

 
Fig. 2 Configurations for different pile groups 
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Table 1  Comparison of group reduction factor for 
friction pile groups with rigid cap 
 

Type of group 2×2 3×3 4×4 5×5 
Poulos 
(1968) 0.672 0.541 0.460 0.403

Butterfield 
& Banerjee 

(1971) 
0.665 0.550 0.456 0.396RG

Present 0.645 0.496 0.419 0.365
 
Table 2  Comparison of load distribution 0 /j avP P  in 
friction pile group with rigid cap 
 

Type 
of 

group 

Pile 
number 

Poulos 
(1968) 

Butterfield 
& Banerjee 

(1971) 
Present

1 1.520 1.510 1.383 
2 0.740 0.750 0.811 3×3 
3 -0.050 -0.060 0.222 
1 2.020 2.020 1.839 
2 0.960 0.965 0.987 4×4 
3 0.050 0.044 0.186 
1 2.580 2.520 2.289 
2 1.180 1.190 1.260 
3 1.160 1.160 1.070 
4 0.010 0.048 0.196 
5 0.100 0.106 0.149 

5×5 

6 0.190 0.095 0.099 
 
 

should be noted that these values are used unless 
otherwise specified. 

A comparison of the group reduction factor, GR  (the 
ratio of the settlement of the group to the settlement of a 
single pile carrying the same total load as the group) for 
2×2, 3×3, 4×4 and 5×5 pile groups is shown in Table 1. 
Apparently Poulos’s and Butterfield & Banerjee’s group 
reduction factors G  are greater than those from present 
formulation for floating piles. Table 2 shows the load 
distributions 0

R

/j avP P  in pile groups of different 
configurations. The pile number is displayed in Fig. 2. 

The results indicate that, for all the pile groups of 
different configurations with rigid cap, the loads on 
individual piles in pile groups from present method 
generally become more uniform than those from the 
other two methods. 

The differences appear to be due to the pile interaction 
effects may be overestimated by Poulos, Butterfield and 
Banerjee. The limitation of their methods lie in that they 
did not properly account for the strengthening effect of 
the piles to the surrounding soil. The interaction factors 
being superimposed in the present method are calculated 
for any two piles in the group, considering the presence 
of the others and thus considering the strengthening  
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Fig. 3a Comparison of load distributions among 
individual piles in pile groups
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Fig. 3b Comparison of load distributions among 
individual piles in pile groups

 
 

effect they have. The present approach, which predicts 
smaller settlements of pile group and more uniform load 
distributions compared to the existing solutions, may 
provide an alternative way to estimate the pile group 
behaviour for accuracy purpose. 
     Figures 3a and 3b show a comparison of the 
dimensionless stiffness ( )0 /j cP Gw d  of individual piles 
within floating pile groups of different configurations 
calculated for different slenderness ratios by Butterfield 
＆ Banerjee (1971) and the authors. The pile numbers 
are again shown in Fig. 2. It should also be noted that the 
present method consistently estimates a smaller 
settlement of pile group and a more uniform load 
distribution within pile groups of different configurations. 
 
 
DISCUSSIONS 

 
The behaviour of pile groups under vertical load are 

parametrically studied in this section. Particular 
attention is paid to settlement ratio sR  and load 
distribution 0 /j avP P . Here sR  is defined as the ratio of 
the vertical settlement of the pile group to that of a 
single pile subjected to the average individual pile load 
in the group. The reference values adopted here are 

/L d =80, =4, /S d sμ =0.3, /p sE E =300, 1000 and 
9000. In the following analysis, these values are used. 
The pile numbers for 4×4 and 5×5 pile groups are 
shown in Fig. 2. 

Figure 4 displays settlement ratios sR  versus the pile 
spacing for three values of stiffness ratio, /p sE E , and 
for two pile groups of different sizes. As expected, the 
pile settlement ratio decreases monotonously with 
increasing pile spacing. The general trend of Rs varying  

 

3 5 7 9
0

3

6

9

11

12
 E

p
/E

s
=300

 E
p
/E

s
=1000

 E
p
/E

s
=9000

 R
s

S/d

 (a)  L/d=80
       4× 4 pile group

 
 

3 5 7 9
2

5

8

11

11

14
 E

p
/E

s
=300

 E
p
/E

s
=1000

 E
p
/E

s
=9000

 R
s

S/d

 (b)  L/d=80
       5× 5 pile group

 
 
Fig. 4 Pile group settlement ratio versus pile spacing 
ratio 
 

 
with S/d is nearly independent of the /p sE E  value. 
However, a decrease in stiffness ratio will greatly 
reduce the settlement ratio of the pile group. For 
example, as shown in Fig. 4 (a), the settlement ratio of 
the pile group with a stiffness ratio of 9000 may be 
reduced to approximately 69-78% of that of the pile 
group with /p sE E =300.  
     The settlement ratios against the pile slenderness 
ratio are plotted in Fig. 5. Again three values of stiffness 
ratio and two pile groups of different sizes are 
considered in the analysis. It can be observed that for 
both pile groups there is a poor agreement of the 
settlement ratios between the different stiffness ratios. 
With an increase of pile length, the settlement ratio 
tends to increase for a stiffness ratio of 9000, while the 
settlement ratio tends to decrease for a stiffness ratio of 
300. 
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Fig. 5 Pile group settlement ratio versus pile 
slenderness ratio 
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Fig. 6a Load distribution versus pile spacing ratio 
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Fig. 6b Load distribution versus pile spacing ratio 
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Fig. 7a Load distribution versus pile slenderness ratio 
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Fig. 7b Load distribution versus pile slenderness ratio 
 
 
     Figures 6a and 6b show the load distributions among 
individual piles versus the spacing ratio for three values 
of stiffness ratio in two pile groups of different size. 
The individual pile load is affected by the pile spacing. 
A small load is carried by the internal piles of closely-
spaced group. As the pile spacing increases, the pile 
head loads tend to be uniform and the general shape of 
the curves is independent of the /p sE E  values. 
However when the stiffness ratio becomes substantially 
rigid ( /p sE E =9000), the pile head loads tend to be 
non-uniform. 

 The load distributions among the piles against pile 
length are plotted in Figs. 7a and 7b for three stiffness 
ratios and two pile groups. Figs. 7a and 7b  indicate that 
for both pile groups there is a poor agreement of the 
curve shapes between the different stiffness ratios. With 
the increase of pile length, the load distributions on 
individual piles tend to be non-uniform for a stiffness 
ratio of 9000, however, the load distributions on 
individual piles tend to be uniform for a stiffness ratio 
of 300. 

To investigate the efficiency of the proposed 
approach based on the superposition of individual pile 
displacement, comparison was made with the results 
obtained by a full analysis which is also based on the 
technique proposed by Muki and Sternberg (1970). The 
results of this study are shown in Fig. 8 for a 3×3 pile 
group of =4, /S d sμ =0.3, /p sE E =1000. Fig. 8 (a) 
indicates that the dimensionless stiffness ( )0 /j cP Gw d  by 
the present solution agrees closely with that by the full 
analysis. In Fig. 8 (b) the time ratio, m , which is 
defined as the ratio of the computational time of the 
present solution to that of the full analysis is plotted 
against the pile length. Fig. 8 (b) shows that the 
computational time of the present solution is about 20%  
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of that of the full analysis for various pile lengths, which 
indicates that the present approach is efficient compared 
to the full analysis method. 
 
 
CONCLUSIONS 

 
This paper is aimed to establish a simple, efficient 

approach to predict the settlement of pile groups. The 
interaction factor is used to predict the behaviour of pile 
groups embedded in a homogeneous isotropic elastic 
half-space. The current solutions have been compared 
with previous numerical analyse. Two pile groups with 
4×4 and 5×5 piles have been analyzed. The main 
conclusions from this paper are drawn as follows: 

 (a) Compared to the full rigorous analytical method, 
the proposed method save much computational time. For 
the analyzed numerical example, the computational time 
of the proposed approach is only about 20% of that of a 

full analysis. Therefore the proposed method is efficient 
and more easily applicable to engineering practice. 

 (b) The interaction factor in the proposed method, 
which takes the strengthening effect of intervening piles 
into account, gives a more reasonable solution to the 
settlement of pile group and load distribution on 
individual piles. In the proposed solution, the calculated 
settlement of pile group is smaller and the load 
distribution on individual piles is more uniform 
compared to those of the existing solutions. 

 (c) The results of the parametric study reveal that 
with the increase of the pile length, the settlement ratio 
trends to increase for a stiffness ratio of 9000. However, 
for a stiffness ratio of 300 with the increase of the pile 
length the settlement ratio trends to decrease. The results 
of parametric study also reveal that pile-soil stiffness 
ratio plays an important role on the load distributions 
among individual piles for both pile groups. With an 
increase of the pile length, under the condition of 

/p sE E =9000 the load distribution on individual piles 
becomes less even, whereas, under the condition of 

/p sE E =300 the load distribution on individual piles 
becomes more even. 
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