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ABSTRACT: This study is aimed at evaluation of the deformation behavior of Shirasu soil (volcanic sandy soil) for 
reclamation and embankment construction, using elastoplastic constitutive equation based on the subloading surface 
model with the rotational hardening. Test results for isotropic consolidation and monotonic/cyclic loading-unloading 
compression with several lateral stresses under the drained conditions for various initial void ratios are reported. Further, 
the simulation by the constitutive equation based on the extended subloading surface model is compared with the test 
results. High applicability of the constitutive equation for the prediction of mechanical behavior of Shirasu soil for a 
geo-material at the lowland in the southern Kyushu is verified by the comparison. 
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INTRODUCTION 
 
Volcanic sandy soil Shirasu is widely distributed in 

the neighboring parts of Caldera in Southern Kyushu, 
Japan. It has considerable apparent cohesion in the 
undisturbed state as a soft rock but loses cohesion in the 
disturbed state as sand, whilst the disturbance is caused 
even by a submersion. Shirasu is generally used as a 
geo-material at the construction sites for reclamation and 
embankment construction, etc. around the costal areas in 
Kagoshima. Hence, the prediction of the deformation 
behavior of this soil is of importance from the viewpoint 
of practical engineering. Triaxial test results have been 
reported by Haruyama (1969, 1977, 1985, 1987) 
revealing the shear characteristics, the angle of internal 
friction, failure condition, etc. However, the prediction 
of stress-strain relation for Shirasu by elastoplastic 
constitutive equations has not been reported so far, 
although a number of research papers on the deformation 
behavior of Shirasu have been published in the past. 
Here, it is noteworthy that elastoplastic constitutive 
equation has been highly developed in recent years. 
Particularly, the subloading surface model (Hashiguchi 
and Ueno, 1977; Hashiguchi, 1978; Hashiguchi, 1980; 
Hashiguchi and Chen, 1998) falling within the 
framework of the unconventional plasticity (Drucker 
1988) in which the interior of yield surface is not 

assumed to be an elastic domain. It would be applicable 
to the description of the deformation behavior of soils in 
not only the normally-consolidated but also in the over-
consolidated states to which Shirasu usually belongs, 
whilst the Cambridge theory (Roscoe and Burland 1968), 
(Schofield and Wroth 1968) is applicable only to the 
description of deformation behavior in the normal-
consolidated state.  

In this article the prediction of the deformation 
behavior of Shirasu by the elastoplastic constitutive 
equation is investigated introducing the subloading 
surface model with the rotational hardening (Hashiguchi 
1994, 2001; Hashiguchi and Chen 1998; Hira et al. 
2002).  

Besides, test results for the isotropic consolidation 
and the triaxial monotonic and cyclic compression 
loading under drained conditions for normal- and over-
consolidated states for various initial void ratios 
subjected to various levels of lateral stress are described 
in detail. Further, the calculated results by the 
constitutive equation are compared with the test results. 
High ability of the constitutive equation for the 
prediction of mechanical behavior of Shirasu is shown as 
the results of simulation. 
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SUBLOADING SURFACE MODEL 
 
In this section the subloading surface model 

(Hashiguchi 1994, 2001), (Hashiguchi and Chen 1998) 
and its application to soils is reviewed briefly, and will 
be latter applied to the analysis of the deformation 
behavior of Shirasu. Let it be assumed that the stretching 
D is additively decomposed into the elastic 
stretching eD and the plastic stretching pD , i. e. 

 
= pe +D D D                       (1) 

 
where the elastic stretching eD  is given by 
 

1 =e −D E σσ                        (2) 
 
σσ is the Cauchy stress and ( ) indicates the proper 

corotational rate with the objectivity (e.g. Dafalias 1985, 
Zbib and Aifantis 1988) and the fourth-order tensor E is 
the elastic modulus given in the Hooke’s type as, 

 
2
3= ( ) ( )ijkl ij kl ik jl il jkE K G Gδ δ δ δ δ δ− + +            (3) 

 
where K and G are the bulk and shear moduli, 
respectively, which are functions of stress and internal 
state variables in general and ijδ  is the Kronecker’s 
delta, i. e. = 1ijδ  for =i j  and = 0ijδ  for i j≠ . 
 
Normal-yield and Subloading Surfaces 
 

Let the following yield condition be assumed. 
 

,(  )  = ( )f F Hσσ ββ                                              (4) 
 

where the second-order tensor ββ  is the inherent or 
induced anisotropic hardening variable and the scalar H 
is the isotropic hardening/softening variable. Let it be 
assumed that the function f is homogeneous of degree 
one in σσ , satisfying f(t σσ , ββ )=tf( σσ , ββ ) for any 
nonnegative scalar t. The inherent and the induced 
anisotropy of soils can be described concisely by the 
rotational hardening, whilst the kinematic hardening is 
inapplicable to soils as has been described by Hashiguchi 
(2001). 

Let the subloading surface (Hashiguchi and Ueno, 
1977; Hashiguchi, 1978;Hashiguchi, 1980; Hashiguchi 
and Chen, 1998) be introduced, which always passes 
through the current stress σσ  and keeps the similarity to 
the normal-yield surface with respect to the origin of 
stress space, i. e. σσ =0. Besides, the ratio of the size of 
the subloading surface to that of the normal-yield surface 
will be denoted by R which can be regarded as the 

measure of approaching degree to the normal-yield state 
and is thus called the normal-yield ratio. The conjugate 
stress yσσ on the normal-yield surface for the current 
stress σσ on the subloading surface due to the similarity 
is given by 

 
=y R

σσσσ                                                (5) 
 
By substituting Eq. (5) into Eq. (4) with regarding σσ  

in Eq. (4) as yσσ , the subloading surface is described as 
 

,(  )  = ( )f RF Hσσ ββ                                   (6) 
 

The normal-yield and the subloading surfaces are 
illustrated in Fig. 1. 
 
Plastic Stretching 
 

The time-differentiation of Eq. (6) for the subloading 
surface is given by 

 

       
( ) ( )t r t r =( ) ( )f f R F RF H

••∂ ∂ ′−∂ ∂ +σσ, ββ σσ, ββσσ ββσσ ββ
     (7) 

 
where 
 

dFF dH′ ≡                                                                       (8) 

 

tr( ) denotes the trace and ( )• stands for the material-time 
derivative. H

•  is given by  
 

( ,  )p
Hf=H

•
Dσσ                                       (9) 

 
where the function fH is homogeneous of degree one in 
the plastic stretching Dp since H

• has minus one 
dimension of time and satisfies H

•
= 0 for Dp = 0. 
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Fig. 1  Normal-yield and subloading surfaces 
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Taking account of the fact that a stress 
asymptotically approaches the normal-yield surface, i. e. 
that the subloading surface approaches the yield surface 
in the plastic loading process, let the evolution rule of 
the normal-yield ratio R be given by 

 

=  for R
p pR  U

• ≠D D 0                                                       (10) 

 
where UR is the monotonically decreasing function of R, 
satisfying 
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as illustrated in Fig. 2.  stands for the magnitude, i.e. 

 
T= t r( )T TT . The function UR satisfying Eq. (11) be 

given by  
 

lnRU u R= −                             (12) 
 

where u is a material constant. 
Substituting Eq. (10) into Eq. (7), one has the 

extended consistency condition for the subloading 
surface:  

 
          

( ) ( )t r t r =( ) ( ) .p
R

f f U F RF H∂ ∂ ′−∂ ∂ +Dσσ, ββ σσ, ββσσ ββσσ ββ
     

(13) 
 
Assume the associated flow rule for the subloading 

surface 
 

 =p λD N ( 0λ > )                          (14) 
 

where λ is the proportionality factor and the second-
order tensor N is the normalized outward-normal of the 
subloading surface, i.e. 
 

( ) ( )/f f∂ ∂
∂ ∂≡N σσ, ββ σσ, ββ

σσ σσ
          (15) 

 
The substitution of Eq. (14) into the extended 

consistency condition (13) leads to 
  

 
t r( )=

pM
λ Nσσ                      (16) 

 
where 
 

        
( ) t r( )t r( }){p R fUFM h R RFF

' ∂1≡ + ∂
+ Nb

σσ, ββ σσ
ββ

 

(17) 
 

h and b are the scalar and the tensor functions of the 
stress, plastic internal state variables and N in degree one, 
which is related to 

.
H and β  as 

 

Hh
.
λ

≡ ,  
λ≡
βb                                                       (18) 

 
since 

.
H and β  includes λ  in degree one. 

The plastic stretching is obtained from Eqs. (14) and 
(16) as 

 
   

 
t r ( )=

p

p

M
ND N

σσ                                                                         (19) 

 

The stretching is obtained from Eqs. (1), (2) and (19) 
as 

 
     1 

t r ( )
=

pM
− + ND E N

σσ
σσ

                                                  (20) 

 

The positive proportionality factor in the associated 
flow rule (14) is expressed in terms of the stretching D, 
rewriting λ  by Λ , as follows: 

 
  

  
 

t r( )
=

t r( )pM
Λ

+
NED

NEN
                                                            (21) 

 
The inverse expression of Eq. (20) is obtained from 

Eqs. (1), (2), (14) and (21) as 
 

  

  
  

  

t r ( )=  
t r( )pM

−
+

NEDED EN
NEN

σσ                                            (22) 

 
 
Loading Criterion 
 

The loading criterion is given as follows (Hill 1958, 
1967): 

 
  

  

   

   

:  t r( ) 0,
= :  t r( ) 0

p

p

≠ ⎫⎪
⎬
⎪⎭

>
≤

D 0 NED
D 0 NED

                                    (23) 

0 1

UR

R0 1

UR

R

 
 

Fig. 2  Function UR of the variable R 
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which is applicable not only to the hardening state 
but also to the perfectly-plastic and the softening states.  

The plastic stretching (19) is obtained by substituting 
the associated flow rule (14) into the extended 
consistency condition (13) which is obtained by 
incorporating the evolution rule (10) of the normal-yield 
ratio R into the time-differentiation of Eq.(7) for the 
subloading surface. The plastic deformation develops 
gradually as the stress approaches the normal-yield 
surface, exhibiting a smooth elastic-plastic transition. 
Thus, the subloading surface model fulfills the 
smoothness condition (Hashiguchi 1993a, 1993b, 1997, 
2000) defined as “the stress rate-stretching relation (or 
the stiffness tensor) changes continuously for a 
continuous change of stress state”, which can be 
expressed mathematically as follows: 

 

lim
) )( , ( , +

=
i i

δ

δ
→

∂ , ∂ ,  
∂ ∂0

S D S D
D Dσ

σσ σσ σσ σσ σσ
σ

           (24) 

 
where Si (i=1, 2, 3, …, m) denotes collectively scalar- or 
tensor-valued internal state variables describing the 
alteration of mechanical response property due to the 
irreversible deformation, δ ( ) stands for an infinitesimal 
variation and the response of the stress rate to the 
stretching in the current state of stress and internal 
variables is designated by )( ,  i, S Dσσ σσ .  
 
Formulation of Extended Subloading Surface Model and 
Material Functions for Shirasu 
 

Based on the equations formulated in previous 
section, the kinematic hardening variable α  and the 
similarity-center s are introduced to the initial 
subloading surface model in this section.  

Let the stress function in Eq. (6) of the subloading 
surface be given for soils as 

2

, {(  )  = 1 }
ˆ

pf m̂
⎛ ⎞

+⎜ ⎟
⎝ ⎠

ηη
σσ ββ                    (25) 

where 

 
1
3t rp −≡ σσ , *ˆ p≡ −σσηη ββ , * pI≡ σσσσ +              (26) 

 
ασ σ= − , ( )R= − −α αs s               (27) 

 
*(  )  stands for the deviatoric component. The second-

order tensor ββ  is taken as the rotational hardening 
variable, i.e. the rotation of yield surface, advocated by 
Sekiguchi and Ohta (1977), whilst ββ  is fixed in their 
formulation. The evolution equation of ββ  has been given 
by Hashiguchi (1994) and Hashiguchi and Chen (1998) 
as follows: 
 

* ˆˆ= ˆ( )p
rr mb −D

ηηηη ββββ ηη
                           (28) 

 
br is the material constants and mr is the stress ratio 
exhibiting the limitation of the rotation of yield surface, 
whilst the surface ηη = mr is called the rotational-limit 
surface which is the function of  
 

 
3

3
trsin3 6
|| ||σθ ≡ −
ηη

ηη
                           (29) 

 
mr is given by 
 

2 6 sin=
3 sin sin 3

r
r

r
m

σ

φ
φ θ−

                             (30) 

 
where rφ is referred to the friction angle for the 
rotational-limit surface under the axisymmetric stress 
state. The rotational-limit surface with Eq. (30) exhibits 
the conical surface satisfying the Coulomb-Mohr failure 
surface at the axisymmetric stress state. On the other 
hand, m̂ is the stress ratio in the critical state and is a 
function of 
 

 
3

3
ˆtrˆsin3 6 ˆ|| ||σθ ≡ −
ηη

ηη
                   (31) 

 
Here, m̂ is given as 
 

2 6 sinˆ = ˆ3 sin sin 3
m

σ

φ
φ θ−

                                (32) 

 
where φ  is referred to the frictional angle in the critical 
state under the axisymmetric stress state. The normal-
yield and the subloading surfaces with the rotational 
hardening for soils are illustrated in Fig. 3 where q is the 
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Fig. 3  Normal-yield and subloading surfaces for 
Shirasu with the rotational hardening 
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deviatoric stress, i.e. a lq σ σ≡ − ( aσ : axial stress,
lσ : 

lateral stress) and 
aσ  is the axial component of ββ . 

And the evolutional rule of the similarity-center is 
obtained as follows: 

 
( )= -tr H

p fc
R

Fσσ α • °° ∂
+ +

∂

⎧ ⎫⎛ ⎞
⎨ ⎬⎜ ⎟

⎝ ⎠⎩ ⎭

, H
D

ss s
Η

             (33) 

 
where  c is the material constant. 

The isotropic hardening/softening function F is given 
by 

 

0= exp( )HF F ρ γ−
               (34) 

 
where 0F  is the initial value of F which is taken so as to 
coincide with the normal-consolidation pressure py. ρ  
and γ  are material constants describing the inclinations 
of the normal-consolidation and the swelling lines, 
respectively, in the (ln ,  ln )v p  plane (v: volume)  
illustrated in Fig. 4 (Hashiguchi 1995). The rate of the 
isotropic hardening/softening variable H is given 
by = p

vH D
•

− , where p
vD (  t r p≡ D ) is the plastic 

volumetric strain. The elastic bulk and shear moduli are 
given as = /pK γ , = 3K(1- 2 )/2(1+ )G ν ν  (ν ; Poisson’s 
ratio).  

 
COMPARISON WITH TEST DATA  

 
Sample Properties and Testing Procedure 
 

 Shirasu sample used for the tests was taken from 
Mizobe-cho, Kagoshima Prefecture. The physical 
properties are shown in Table 1. The gravel fraction of 
Shirasu consists mainly of pumice and a small amount of 
derived rock fragments such as andesite. The particles 

are considerably angular. Coarse fragments are 
subangular to angular, and the shape becomes angular as 
the grain size becomes finer, and only thin, flat and 
angular particles are observed in the finest fraction. Most 
of the fragments are volcanic glass; its surface texture 
generally looks smooth. On the other hand, the pumice 
has frothy structure and its surface is very rough. This is 
the reason why the Shirasu has small density compared 
with other sandy soils. The water content was adjusted to 
be 15% after natural drying in the laboratory and sieving 
through a sieve of 2 mm meshes. The specimens were 
compacted using a rammer in a cylindrical mold of 50 
mm in diameter and 125 mm in height, so as to give a 
specified initial density. Furthermore, the layer and 
compaction numbers were set in accordance with the 
form of Proctor’s equation to give three kinds of density, 
and thus initial void ratio was prepared to be three levels 
0.83, 0.95 and 1.01. At the specimen preparation stage, 
attention was paid to the adjustment of initial void ratio 
by the compaction method in order to realize a precise 
comparison of test results depending on the difference of 
initial void ratio. 

 In order to measure volumetric change precisely, 
nearly saturated specimens (Skempton’s B-value > 0.95) 
are prepared by vacuum procedure (Rad and Clough 
1984) in which the effective isotropic stress σσ =4.9 I 
kPa (0.05 kgf/cm2) is applied to specimens at the 
beginning of tests. Then, the isotropic loading-unloading 
tests and the conventional triaxial compression tests 
were performed by the stress/strain control. In case of 
the isotropic consolidation process the small pressure 
increments of 4.9 kPa are added in stages by the 
computer-aided control such that a volume change 
negligible in each stage taking more than ten minutes. 
On the other hand, in case of the axial compression tests 
the small axial strain rate of 0.1 %/min. is added so as 
not to cause the excess pore pressure in the drained tests 
with four levels of confining pressure 98 (1), 196 (2), 
294 (3) and 392 (4) kPa (kgf/cm2), whilst axial loads at 
the maximum level of 196 kPa under total confining 
pressure 98 kPa are applied to samples for the cyclic 
loading-unloading tests. 
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Fig. 4  Linear relation of lnp versus lnv for isotropic 
consolidation of soils 

Table 1  Physical properties of Shirasu 
 

Grading   Sand   77 % 
Silt   20 % 
Clay    3  % 

Coefficient of uniformity cU  38.9  
Coefficient of curvature cU ′  3.84  
Specific gravity of soil particles sG  2.43   
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Material Parameters for Simulation 
 

The material constants ρ , γ  and the initial value F0 
are determined so as to fit the test result of isotropic 
consolidation illustrated in Fig. 5. The Poisson’s ratioν
is obtained by the value of γ and the inclination of the 
initial rising part of stress-strain curve in the triaxial 
compression test results. The parameter u in the 
evolution rule of the normal-yield ratio R is determined 
from the curvature of the stress-strain curve in the 
transitional state from the elastic to the normal-yield 
state, while it is smaller for looser samples. The stress 
ratio at the stress on the normal-yield surface in which 
the outward-normal vector loses the component of 
hydrostatic axis changes only slightly. Especially, it is 
fixed independent of the rotation in the yield surface of 
the original Cam-clay model. The angle φ  of internal 
friction in the critical state can be determined 
approximately from the stress ratio in the residual state. 
The limit-angle rφ  of the rotational hardening and the 
parameter br controlling the rate of rotational hardening 
are determined so as to supplement the degree of 
hardening in the test result with the deviatoric 
deformation. The material parameters used in the 
simulation are listed in Table 2, where F0 stands for the 
values of F in the initial state ( σσ =4.9I kPa) of 
calculation.  

The rotational hardening has to be incorporated in 
order to simulate several test data with different lateral 
stresses using a unique set of values of material 
parameters, whilst only one test datum could be 
simulated without adopting the rotational hardening. 
Besides, it is impossible to change the void ratio so 
much as 0.1 without the particle crushing for materials 
composed of large particles as sands, Shirasu, etc. by the 
quasi-static small deformation process. On the other 

hand, constitutive equations at the present level can deal 
only with the quasi-static small deformation process 
without the scattering of particles in the dynamic 
deformation process by which specimens with different 
void ratios are prepared. Besides, the relationship 
between material parameters and initial void ratio has 
not been revealed yet for sands, Shirasu, etc. The values 
of material parameters are given independently for the 
loose, the middle and the dense specimens in the model 
simulation. 
 
 
COMPARISON OF THEORY AND EXPERIMENT 
 

All the calculations start from the unique isotropic 
effective stress state σσ =4.9I kPa and thus in the triaxial 
tests the isotropic consolidation test is performed until 
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Fig. 5 Relations of volumetric strain versus pressure 
for isotropic loading-unloading processes 

Table 2  Material parameters used for Shirasu samples 
 

Parameters  Dense Middle dense Loose 

Initial void ratio(average) 0e  0.83 0.95 1.01 

Initial value of hardening function 0F  790 kPa 495 kPa 210 kPa 
Internal frictional angle in the critical state φ  36° 36° 36° 
Evolution rate of the rotational hardening rb  350 300 210 

Rotational limit angle rφ  23° 22° 19° 

Evolution rate of the normal-yield ratio u 65 60 50 
Initial value of the similarity-center  s 70 70 70 
Material constant for the move of similarity-center c 30 30 30 
Inclination of normal-consolidation line ρ 0.040 0.042 0.047 
Inclination of swelling line γ 0.002 0.002 0.002 
Poisson's ratio ν 0.3 0.3 0.3 
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the prescribed confining pressure. All the calculated 
results are depicted by solid lines. 

Isotropic loading-unloading consolidation behavior 
for dense, middle dense and loose samples is shown in 
Fig. 5. A fairly good prediction of the volumetric strain-
pressure curves is attained. The differences of the 
volumetric strain with changes in the initial void ratio 
are realistically simulated by the theory, whilst the 
plastic deformation is predicted properly even in the 
subyield state. 

The relationships of the deviatoric stress and the 
volumetric strain versus the axial strain under the 
drained triaxial compression are depicted in Fig. 6 for 
dense, middle dense and loose samples subjected to four 
levels of confining pressure (Fig. 6). The deviatoric 
stress-axial strain curves of dense samples exhibit a peak 
in the deviatoric stress, whilst the curvature of the curves 
decreases with the increment of the confining pressure. 
The predicted stresses after peak are higher than the 
stresses in the test results. It might be caused by the 
shear band formation in the test samples as will be 
described in the end of this section. On the other hand, 
the curves of loose samples do not exhibit a peak in spite 
of the confining pressure. The volumetric strain-axial 
strain curves also agree well with the test data. The 
phenomenon observed in the test results of dense 
samples that the maximum ratio of the volumetric strain 
increment to the axial strain increment is realized at the 
peak state of axial stress is predicted exactly by the 
theory. This phenomenon has been widely known as the 
experimental fact for over-consolidated soils as has been 
written even in the classical literature of Taylor (1948). 
It was also suggested by Newland and Alley (1957) from 
the micromechanical aspect that “When sliding just 
begins, the shear stress and rate of volumetric expansion 
reach maximum values, since at this state the sliding 
contact angles of soil particles to the shear plane are at 
their maximum”. Besides, smooth stress-strain curves are 
predicted for monotonic loading process by the present 
theory, whilst a sharp bent in the stress-strain curves at 
the initial yield state is predicted by the conventional 
theory represented by the Cambridge theory (Roscoe and 
Burland, 1968; Schofield and Wroth, 1968) for normal-
consolidated state and the Drucker-Prager (1952) for 
over-consolidated state.  

Besides, the cyclic loading-unloading test results   
under the confining pressure at 98 kPa are shown in Fig. 
7. All parameters are the same as those of monotonic 
loading tests for each initial density. A good prediction 
of the strain-stress curves is attained, whilst the 
hysteresis behavior of stress-stain curve for soils is 
realistically described and the accumulation of strain by 
calculation is provided. The stress-strain tendencies by 
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Fig. 6  Relations of axial strain versus deviatoric stress, 
axial strain versus volumetric strain for drained triaxial 
compression test of dense, middle and loose samples 
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simulation results are verified by comparison with the 
cyclic loading-unloading tests. It is shown that the 
application of the extended subloading surface concept is 
very useful to consider the cyclic loading problems. In 
this article the parameters are examined to be identical 
by the initial density (initial void ratio). 
 
 
MECHANICAL FEATURES OF SHIRASU SOIL 
 

The deformation behavior of compacted Shirasu is 
predicted here by the elastoplastic constitutive equation. 
The prediction has been attained historically first in this 
paper. Therefore, it is difficult yet to found mechanical 
features of Shirasu definitely. In the present situation the 
following mechanical features of Shirasu from the 
viewpoint of constitutive equation might be indicated as 
compared to those of clays (Topolnicki, 1990; Asaoka et 
al., 1997; Hashiguchi, 2001) and sands (Hashiguchi and 
Chen, 1998; Noda et al., 2001). 

1. Particles of Shirasu have size similar to that of 
sands but are quite angular leading to cohesion by 
compaction. Therefore, in general, Shirasu exhibits 
deformation behavior of clays and/or sands depending 
on the test conditions. Besides, the compacted Shirasu 
sample exhibits rather brittle behavior and thus would 
lead to shear band formation causing an apparent 
softening more intense than softening predicted as a 
constitutive property. It would be the reason for the 
difference of stress-strain curves after peak stress in 
calculated and test results and prediction as seen in Fig. 
6. 

2. After the initial unloading stage, the value of 
axial strain is very small as shown is Fig.7, the plastic 
strain component of Shirasu is also small. 

3. The void ratio is large in the order of clays, 
Shirasu and sands, and thus ρ  (inclination of normal-
consolidation line) is larger (easily compressed and 
fragile) and evolution rate of the normal-yield ratio u in 
Eq. (12) is smaller (easily deforms plastically) as in 
above order.  

4. The elastic deformation is substantially caused by 
the deformation of soil particles themselves, and thus 
inclination of swelling (elastic consolidation) curve γ is 
not so different between clays, Shirasu and sands. 

 
 

CONCLUSIONS 
 
The description of deformation behavior of Shirasu 

soil by the elastoplastic constitutive equation is studied 
adopting the subloading surface model with the 
rotational hardening. The predicted results by the 
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Fig. 7  Relations of axial strain versus deviatoric 
stress, axial strain versus volumetric strain for  
cyclic loading-unloading test under drained 
condition 



 
Deformation behaviors of Shirasu soil by the extended subloading surface model 

constitutive equation were compared with some test data 
of compacted Shirasu samples for the isotropic 
consolidation and the triaxial monotonic and cyclic 
compression under the drained condition for normal- and 
over-consolidated states for various initial void ratios 
subjected to various levels of lateral stress. Calculations 
were performed starting from unique isotropic stress 
state and using each unique set of values of material 
parameters depending on dense, middle and loose 
samples. The capability of reproducing real deformation 
behavior of this volcanic sandy soil was verified in this 
comparison.  

Further, the constitutive equation is limited to the 
prediction of monotonic loading behavior. In order to 
predict the cyclic loading behavior of Shirasu, the 
extended subloading surface model with kinematic 
hardening variable can be shown to be in good 
agreement with test results. The elastoplastic constitutive 
equation using the extension of the subloading surface 
model is effective in predicting a mechanical ratcheting 
behavior for soils. However, tested samples are limited 
to artificially compacted samples and thus the 
comparison with undisturbed natural samples would be 
desirable in order to confirm the capability.  
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