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ABSTRACT: An urban growth model using stochastic cellular simulation was developed with motivation to understand 
the consequence of zone management policies in lowland cities. The model could integrate the growth, decline, spread, 
intensification, and protected areas of the urban growth into a single generalization of both the Eden and the p-models. 
Calibration strategy was demonstrated using historical aerial photographs of Saga city, Japan. 
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INTRODUCTION 
 
A special well known characteristic of lowland cities 

is its sensitivity from the fluctuating water levels. Flood 
and storm water are commonly regarded as the most 
frequent and widespread natural hazard for such places. 
In connection with urban development, the improvement 
regulation of zone management is one of the most 
comprehensive and long-term solutions for hazard 
mitigation. The overall aim is to reduce the risks 
involved in the present occupation of flood-prone land 
and to deter further invasion of such area (Smith and 
Ward, 1998). To make such policy of zone management 
effective, an urban development model is needed. Since 
real field experiments in urban development is 
impossible, numerical experiment using computer 
simulation can be utilized to comprehend the effect of 
zone management policies and to predict the long term 
effect of several urban development scenarios.  

In the last decades, urban development modeling has 
attracted many researchers in urban planning fields 
because it may be used as laboratories for exploring 
ideas about how cities work and change over time 
(Torrens and O’Sullivan, 2001). (Clarke et al, 1997) 
proposed an urban development model using simple 
growth that an occupied cell has at least three neighbors 
will become a new developed cell if it can pass 
constraints of repeating spread and slope. This growth 
has analogy to the spread of fire in the forest. New 
growth location is always selected at a random location 
that can pass some constraint. Spontaneous growth is 
growth wherein a new seed can be put at a random 
location that has at least one neighbor and quite flat. 

However, the Clarke model relies heavily on ad hoc 
solution through combinations of many unrelated and 
independent sub models such as road, slope, seed cells, 
and protected areas. (Batty, 1991) uses the Diffusion 
Limited Aggregation (DLA) model to analog urban 
growth. The unconstrained real city growth however, is 
more similar to a circle rather than the tentacles-shaped 
DLA. (White and Engelen, 1993) uses fractal land-use 
structure and calibrates the model by simply matching 
the fractal dimension of simulated city with the map of 
the real city. (Benguigui, 1995) proposed to model the 
city as binary value of developed or undeveloped cell. 
The growth rule is similar to a simple cellular growth of 
Eden model with additional parameter number of visit p, 
before the cell is developed. A higher p value tends to 
make dispersion or unconnected development clusters.  
The dispersion phenomenon is related to the spread of 
the city growth toward scattered clusters rather than 
aggregated clusters. This model, however, do not 
incorporate the intensity of the development. The model 
could not distinguish which part of the city has more 
development than the other. The literature of cellular 
growth model can be traced back to 1961 where Murray 
Eden proposed a very simple stochastic aggregation 
model to describe the formation of a cell colony such as 
bacteria or germ cells. The process begins with a single 
seed and a new black cell is added at each step at a 
randomly chosen position adjacent to the existing cluster 
of black cells. The shape obtained is ultimately an almost 
perfect circle. (Teknomo et al, 2005) has proposed to 
extend the Eden model into a city growth model in 
lowland cities. The model, however, was only working 
for hypothetical unconstrained cities. 
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In this paper, we describe an urban spatial model 
based on our previous work that has been improved and 
developed further with motivation to understand the 
consequence of zone management policies in lowland 
cities. The model is a simplified form of a city in which 
the focus is on the physical development of city blocks. 
The model is general enough to be applied for any 
lowland cities. It consists of space, time and 
development values. Space is the location of 
developments, time corresponds to the development 
stages and value indicates the constraint, opportunity of 
development and the value of the space over time. The 
model itself can also be seen as a multi agent cellular 
automata simulation with many developers as agents and 
users play as the government that derives certain policies 
over time. 

In contrast to the existing urban spatial model (i.e. 
Clarke et al, 1997) that rely on ad hoc solutions through 
an assortment of many unrelated and independent sub 
models our approach is more comprehensive. Our model 
could integrate the growth, decline, spread, 
intensification, and protected areas of the urban growth 
into a single general model. In fact, we show in this 
paper that we have generalized the Eden and the p-model. 
In the simplest form, our model will be equal to Eden 
model (Eden, 1961). Setting some minimum constraint 
on the development index, our model will approach the 
p-model of (Benguigui, 1998).  

This paper is organized as follows. The stochastic 
cellular model is explained in the next section. Then, 
calibration strategy of the model is described using an 
example of Saga city in Japan. Before the concluding 
remarks, theoretical characteristics from the simulations 
are discussed. 
 
 
STOCHASTIC CELLULAR MODEL 

 
The urban spatial model that we have developed is 

quite simple and applicable to many cities. The 
parameters of the model consist of one set of 
neighborhood probabilities , 1..9ip i= =N , maximum 
distance (layers) of the neighborhood, md , additional 
development index λ  and maximum number of 
developments per year, me . The first two parameters 
influence the shape of the city and overall spread of the 
city. The third and fourth parameters influence the 
degree of development intensity. Neighborhood 
probability indicates urban growth characteristic, 
neighborhood’s maximum distance control the 
dispersion of the city shape. Additional development 
index and maximum number of developments per year 
are parameters that represent the overall economic 

condition of the city. They measure how fast a 
development can go at a particular year.   

The initial conditions consist of two sets: constrained 
development and seeds of development. The constraint is 
signified by a constraint matrix C where the value 
represents the probability that a cell is allowed to be 
developed. Physical constraints such as river, sea, forest, 
and mountain are valued with a zero probability while 
parcels nearer to the road will have higher probability to 
be developed. This probability values can also be set as 
threshold to represent government policy such as zone 
prohibition from development (e.g. flood prone area), 
minimum and maximum development index. The 
minimum development index may be interpreted as the 
developer’s evaluation value to rather wait from the time 
to buy the land until a certain time to actually implement 
the decision to build it. The maximum development 
index is interpreted as restriction usually set by local 
government to keep some zone to be built for cultural or 
environmental reason (e.g. green belt, cultural heritage, 
maximum floor to area ratio, etc.) 

The computational paradigm of the model uses a 
multi agent cellular automata simulation with many 
developers as agents. Users of the simulation play as the 
government that derives certain policies over time. The 
city is represented by a city matrix S , where each cell 
represents a block space in the city with occupied cells 
as developed block and unoccupied cells represent 
barren land. Each occupied cell has some value to 
characterize further the other dimension of the 
development that we call development index. 

The underlying phenomena or fact below are the 
basic assumptions of our model. The model considers 
how a developer chooses a location in the city and how 
the development typically occurs in a city. The process 
in the simulation imitates the rational actions of a real 

Fig. 1  Diagram of CA Transformation Rule 
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world developer. 
1. Developers tend to choose an area or a 

neighborhood of interest that have certain types 
of development rather than in the empty places 
in the middle of nowhere. This fact can be seen 
generally from the land value, number of floors 
in the buildings, or population density. 
Neighborhoods that are more developed have a 
tendency to have higher land value due to 
higher demand.  

2. Most developers choose a neighborhood of 
interest as a whole area, and then they tend to 
find the particular available places inside or 
surrounding the center of the neighborhood of 
interest. As if looking at the map and encircling 
a particular neighborhood first rather than a 
specific point in the map. After that, they find 
the more specific locations (point) as candidates 
in that chosen neighborhood. 

3. In finding the specific point on the selected 
neighborhood, developers tend to have a higher 
preference for location that is near to the center 
of the neighborhood of interest and have very 
low interest to the location farther away from 
the center of the neighborhood of interest. The 
preference diminishes by distance.  

4. Once the developers have selected the particular 
locations as candidates, they start the process of 
examining the availability of the land due to 
city regulations and land prices. This 
examination imposes some constraint to the 
developers. 

5. A few developers start from a particular 
location (normally they already have the land 
available) and build on it. 

6. Economic situation and taxation of the city or 
country may also affect the amount of 
development to be implemented. 

 
To model the assumption above, any new candidate 

of development must be selected from the existing 
occupied cells in the city matrix. This is because the 
occupied cells represent developed places.  Each 
developed cells has the equal chance to be selected. The 
assumptions above never imply that the city center has 
more chance to be developed. Building far from the city 
center may be less expensive and may attract 
more people. In fact, the model put uniform probability 
for all developed location to be chosen for further 
development. The results of the simulations, however, 
produce self-organization phenomena that the highest 
development will always occur around the city center. 

To represent the preference to select a particular 
location surrounding the area that has been selected, we 
introduce a template matrix N  that consists of a 
neighborhood probability. In general, this template 
should represent the urban growth characteristic of the 
city. In latter section of Calibration Strategy we discuss 
how to obtain this template matrix from the aerial 
photographs of a city. 

The urban growth model is a transformation of the 
city matrix at a certain time ( )tS  using a template matrix 
called Neighborhood probability matrix N  subject to a 
constraint matrix C . Let us denote that transformation 
as :T →N S S , we have ( ) ( ( 1))t T t= −NS S . Figure 1 
shows these transformation rules in a diagrammatic 
manner.  The transformation :T →N S S  is defined with 
the following rules: 

 
1. Select a location in the city matrix S  at random, 

based on the existing occupied cells as the center of 
template matrix N . 

2. Select a position in the template according to the 
random distribution of the template and project this 
cell to the city matrix and to the constraint matrixC . 

3. Modify the value of the city matrix at the projection 
cell if and only if the projection cell can pass all the 
constraints. 

 
The three rules of transformation above are put into 

operation into four steps of the simulation model 
1. Location Selection: inside the neighborhood, 

randomly select a direction to point to the specific 
location of development plan 

2. Neighborhood Searching: among the developed 
cells, randomly select a cell location of the center of 
a neighborhood and the size of the neighborhood 

3. Development Plan Evaluation: examine all the 
constraints of the specific location of development 
plan. If the specific location pass all the constraint, 
go to stage 4, otherwise reconsider stage 2 

Fig. 2 Chessboard distance measurement in 
neighborhood matrix 
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4. Implementation Development Plan: increase or 
decrease (by nature as developers) the development 
index value of the chosen cell. 

The connectivity between cells is modeled using 
Moore neighborhood with 8 neighbor’s connectivity. 
Distance between cells is computed as chessboard 
distance with zero in the center of the neighborhood 
matrix N . 

Using chessboard distance as the basic distance 
computation, one can use the distance as layer from the 
center. One novel idea of this model is the integration of 
maximum distance or maximum layer from the center of 
the neighborhood as one of the parameter of the model.   
This parameter influences the dispersion of the city 
shape. It represents a degree on how far the developer-

agents are willing to develop from the developed area. 
Setting a wider neighborhood from the immediate layer 
to 

md  will make development on the perimeter of the 
city go beyond the connected component of the cells. 
The idea of using maximum layer as parameter is 
structurally inside the model. This is in contrast to the 
simple sparse probability as introduced in Clarke model 
(Clarke et al 1997). Clarke model simply adds sparse 
probability as an independent sub model to control the 
dispersion, while our approach is to integrate the 
dispersion as an internal part of the model. The problem 
with using neighborhood layer is neighborhood 
probability determination of the layer. For a 3 by 3 
neighborhood matrix, the user of the simulation can 
determine the probability of the 8 cells. However, for 

Fig. 3  Using immediate neighbor probability (black bar) to compute outer cells probability 

Fig. 4  Redistribution neighborhood probability using linear model 
 

Fig. 5  Relationship of Area, time and dispersion parameter from simulation (left) and both simulation and 
approximation function (right) 
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example, for 7 by 7 neighborhoods, determining the 
neighborhood probability is quite problematic for the 
user. Instead of inputting all of those probabilities, a 
better but similar idea is to introduce only one maximum 
distance parameter and let the computer do the 
normalization probability values based on a probabilistic 
model. It is a probability function which shows that the 
farther the cell is from the center the lesser attention it 
should get compared to the nearer cell.  Suppose the 
immediate neighbors has probability as black bars as in 
Fig. 3, then we can use the maximum distance parameter 
to calculate the neighborhood probabilities of the other 
cells up to the maximum distance from the center.  

Though we can assume some theoretical 2 
dimensional probability distribution model of 
neighborhood probability (such as Beta or Binomial), 
expanding it unsymmetrical into different directions will 
cause not only the change of the parameters but also 
change in the model itself. This is a disadvantage rather 
than advantage. In fact, as can be seen in the Calibration 
Strategy section, the neighborhood probability does not 
follow any theoretical distribution but is based on the 
aerial photographs of the city. Thus, we use another 
method to greatly simplify the redistribution through 
linearization of the smooth probability distribution. The 
error due to linearization is relatively small when the 
distance is small. The principle behind maximum 
distance parameter is to redistribute the neighborhood 
probability until the maximum distance from the center. 

To calculate the other neighborhood cells, we assume 
the central probability as dummy probability and it is 
always the highest, regardless of what the user inputs as 
the center probability. If the maximum layer is one, no 
further calculation of the other neighborhood cells is 
needed. The following is an illustration of a simplified 
idea to redistribute the probability using a linear model. 
The purpose is to compute the value of neighborhood 
probabilities in each cell in that neighborhood up to the 
maximum distance. 

 
1. Among the immediate neighborhood, we find the 

maximum probability, name it Pm 
2. Let the maximum distance from the center be dm, 

then the probability at dm +1 must be zero. Thus, we 
take a straight line between (1, Pm) and (dm +1,0) 
crossing a vertical line at the center we get (0, Pc). 
Call this line as an extension line. 

3. From all other immediate neighbors, draw an 
extension line from (0, Pc) to this neighbor 
probability (example line (0, Pc)- (0, Pb)). 

4. For all non immediate neighbors cell, intersecting a 
vertical line from the distance to the extension lines 
to get new points (in example above: (2, P1), (2, P2), 
(3, P3)). Note that only positive points are taken. 

5. Normalize the value of all neighboring points except 
the center (in example above: 

321 PPPPPT mb ++++= , TPP /1
'

1 = , TPP bb /' = , 
TPP mm /' = , TPP /2

'
2 = , TPP /3

'
3 = ) 

 
Aside from setting the maximum distance as the 

main parameter for dispersion, an unconnected 
dispersion shape can also be produced by setting a 
minimum value of development index. (Benguigui, 
1995) proposed what he called as p-model extension of 
Eden for town growth. In the Benguigui model, the cell 
is in 3 states: vacant, visited and developed. After a cell 
is visited p number of times, it will become a developed 
cell. Generalizing the 3 states into a development index, 
we found that the p-value is equivalent to minimum 
development index that can be set as constraint in our 
Development Plan Evaluation step. If the development 
index of a cell is below the Benguigui p- value, it will 
not be considered as a developed cell and will not be 
considered in the output indices.  

Another input parameter, the maximum development 
index, is a constraint development rather than affecting 
the overall shape. If the cell is considered but has a 
development index more than the specified value, the 
implementation step will not take place. If the Benguigui 
p-value (i.e. minimum constraint) is specified, the 
maximum development index must be specified at least 
the same as the minimum. If the maximum development 
index is higher than the Benguigui value, then the 
Benguigui value produces no meaningful result because 
it is always bounded by the maximum value 
automatically. 

Simulating the model using the default values for an 
increase of dispersion parameter produces many outputs. 
One of the outputs is the area of the city in terms of 
number of cells. Relating the output with the input 
parameters through least square method yields some 
relationship. Important relationship between area, time 
and dispersion parameter is shown in equation (1). The 
best fit model is a power model and the parameter of the 
model shows the substantial weight of each factor. The 
number below each factor is the t statistic. Figure 5 
shows the plot of the relationship. The left figure 
represents the simulation results while the right figure 
plots both model and simulation results. It seems that the 
dispersion affects very little adjustment while time 
affects the area exponentially. Due to this minimal effect, 
dispersion parameter (in terms of maximum distance 
layers of the neighborhood, dm) will not be searched as a 
special case in our calibration strategy. A similar 
reasoning is adapted to other parameters of additional 
development index λ  and maximum number of 
developments per year, em. 
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   0.748 0.069

(312.8) (210.2) (15.9)
107.315Area Time Dispersion= ⋅ ⋅  

    with 2. 0.978adj R =     (1) 
 

 

 
CALIBRATION STRATEGY 

 
As mentioned in the previous section, the model has 

four parameters which consist of one set of 
neighborhood probabilities , 1..9ip i= =N , maximum 
distance (layers) of the neighborhood, md , additional 
development index λ  and maximum number of 
developments per year, me . The last three parameters 
are simply three numbers that can be easily calibrated 
using Monte Carlo search with three tuples to minimize 
the difference between the real world developed cells 
and the simulation. The first set of parameter, that is 
neighborhood probabilities, however, is the most 
important parameter that is not easily detected using the 
search algorithm. The calibration of the neighborhood 
probability will influence the direction of city growth 
over time. A calibration strategy is needed to obtain the 
neighborhood probabilities. This section describes the 
general calibration strategy to obtain the neighborhood 
probabilities which will include segmentation of aerial 
image into real world developed cells. These developed 
cells serve as the basis of the search algorithm to obtain 
the three other parameters. 

The calibration of neighborhood probabilities is 
based on the historical aerial pictures of the city. First, 
all of the aerial photographs are transformed into a single 
set of coordinate system through perspective 
transformation. At the end of this transformation, all the 
pictures have the same scale, and the same coordinate 
system with a single origin point. This transformation is 
necessary to ensure the consistency of the pictures. 

Second, the transformed aerial photographs are then 
converted into two categories, developed cells and 
undeveloped cells. Boundary of the developed cells is 
drawn as the city perimeter. Third, city center are 
positioned and the difference area from the city center to 
the 8 directions of the city perimeter are measured for 
each aerial image. These area differences are then 
normalized as the neighborhood probability distribution. 

The calibration of the development index requires the 
interpretation of the development index. The 
development index could represent any spatially related 
developed value of the city, such as population density, 
and land value, number of floor area and so on. The 
calibration strategy is to select any combination of those 
spatially related developed data into a normalized 
development index. The trend of the development index 
is then compared to the simulation result. Adjustment of 
parameters such as range of additional development 
index, and range of number of developments per year 
will change the simulation results in terms of 
development index without affecting the overall shape. 
Overall fit of the development index of the real city is 
then compared with the simulation result through 
searching the parameters that produces those fit. 

 
Image Calibration 

 
Before the historical aerial photographs can be used 

for calibration of the urban model, they must be scaled 
into the same size and each pixel must indicate the same 
actual field location. Since the aerial photographs are 
taken from different years, they do not have the same 
size and due to inaccuracy of the picture taken, some 
skew angle may happen. To use them with sound 
reliability, image calibration is a necessary step to ensure 
all aerial photographs have the same scale, the same 
projection plane and the same coordinate system. To do 
that, we need to utilize one of the pictures as the basis 
coordinate. The choice of the basis picture is arbitrary as 
long as it is consistent. For example, the basis 
coordinates for the scaled Saga city is the aerial image of 
the year 1974. 

Several pivot points are marked in all historical aerial 
photographs and the coordinate of the pivot points are 
gathered using the basis coordinate. For example, these 
pivot points may include fixed location of the road 
intersections, river intersections, or certain buildings that 
do not change over time. Since marking of the pivot 
points need visual human inspection, it is done manually. 
Those pivot coordinates indicates the same points in the 
real field that do not change over time. Assuming those 
pivot points had been distorted by scaling, translation 
and skew rotation, we want to recover the images from 

Fig. 6  Base aerial picture of Saga city, Japan in 1974 
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distortion and put them in the same size and the same 
coordinate system. Translation recovery can be done 
easily by matching pivot points after scaling and skew 
rotation has been restored. To recover the scaling and 
skew rotation, we use the affine regressions toward all 
the pivot points of two images. One of the image must be 
the basis image or images that has been fully restored 
(i.e. has the same basis coordinate) from all distortion. 
The affine regression formula is as follow: 

 
( cos sin )b x i x i xs β β= +x x y    

                    (2) 
( cos sin )b y i y i ys β β= +y x y  

 
Notation ( , )b bx y  is the coordinate of basis year, 

while ( , )i ix y  is the coordinate of other years. Both 
coordinates are represented in vector terms because they 
consist of many pivot points. Equation (2) can be put 
into multiple linear regressions as  

 
b i ia b c= + +x x y     

      (3) 
b i id e f= + +y x y  

 
The skew rotation horizontal and vertical angles are 

respectively )/arctan( bcx =β  and )/arctan( fey =β . 
The scaling in widths and heights are respectively 

)cos(/ xx bs β=  and )sin(/ yy es β= . 
After all aerial photographs have been restored from 

the distortion; they are cropped into the same size. With 
this step, we have the same size of historical aerial 
photographs that has the same coordinate system. 
 
Segmentation of Developed Area 
 

The next step in the calibration strategy is to segment 
the aerial photographs into two categories, developed 
cells and undeveloped cells. This segmentation is 
important to serve two purposes. First it can be used to 
generate a constraint matrix based on the city planning 
and physical constraint of undeveloped cells such as 
agricultural field, river, cliff, sea, mountain, or forest etc. 
Second, the developed cells are utilized as the basis to 
compute neighborhood probabilities.  

We have standardized the step to segment 
approximation of the developed area from the aerial 
image through a series of operation of edge detection 
filter, threshold the gray value images into binary using 
threshold value hT kμ σ= − , and dust and scratches 
noise filter and finally stamp filter to color the developed 
cell. For Saga city historical aerial pictures, we use 1k =  
with μ  and σ  as mean and standard deviation of the 
pixel value from histogram, noise radius of 10 with 

threshold of 100, both light/dark balance parameter and 
smoothness parameters of one. A few manual noise-
cleaning was done to ensure the results without affecting 
the overall segmentation. The segmentation pictures are 
shown in Fig. 7. The results of segmentation were highly 
correlated with the developed cells. 

 
Neighborhood Probability Distribution 

 
Once the historical aerial images are segmented, the 

next step in the calibration is to compute the spatial 
distribution neighborhood probabilities. For each two 
consecutive historical aerial images, the difference area 
of the developed cells is determined. The center of 

Fig. 7 (a) the historical aerial photographs overlay with 
the segmented developed cells (b) the segmented 
development based on the aerial photographs 
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gravity of the developed areas in the two input images 
are computed and averaged to provide the basis of 
division of the difference image. The difference image is 
then shifted so that the average centers of gravity as the 
center of the image without any rotation. This is to 

provide a common coordinate system for division of the 
image difference. Blank space replaces the uncovered 
area. Then, the regions of image difference are divided 
into 9 equal rectangles (see Fig. 8). The region of image 
difference in each rectangle is measured and normalized 
by division of the summation to give the spatial 
distribution of neighborhood probabilities. 

 
 , 1..9i

i
i

i

Ap i
A

= ≅ =
∑

N     (4) 

 
Search Algorithm 

 
Monte Carlo search (which is included in the family 

of Genetic algorithm and Simulated Annealing) is well 
known to be able to find the global optimum. We 
employ direct random search method as suggested by 
(Chapra and Canale, 1998) to find three 
parameters , ,m md eλ , by minimizing the difference 
between the segmented developed area and the 
simulation results. The neighborhood probabilities are 
set between two bounding years. Since the changes of 
the neighborhood probability distribution over time are 
relatively larger than 5% threshold, we cannot use the 
average of the neighborhood probabilities over all the 
30-year period to extrapolate the growth. Only 
interpolation of urban growth within those years is 
allowed. 

Table 1 shows the shape descriptors of Saga city 
based on the aerial photographs. The corresponding 
growth is shown in Fig. 9. This growth is based on the 
1974 map and the corresponding additional 5 year 
growths are shown in different shade patterns. The 
descriptors consist of Area of developed cell in square 
pixels and its centroid (x, y), perimeter length that bound 
the developed area, and ellipse representation of the 
urban growth in terms of major and minor axis and angle 
between the major axis with the horizontal line bounding 
the image. Thinness ratio is derived from area and 
perimeter

2

4( )AThinness ratio
p
π

= . A value of 1.0 indicates a 

perfect circle. As the value approaches 0.0, it indicates 
an increasingly elongated polygon. More elaborate shape 
descriptors used in this research were explained in 
(Teknomo et al, 2004). 

Fig. 8  Area differences of developed cells based on two 
historical aerial images (1974 and 1980. The 1974 part 
is shown only for clarity of description) 

Fig. 9  The spread of Saga city from 1974 until 2003 

Table 1  Shape descriptors of Saga city based on Aerial Photograph 
 

Year Area X Y Perimeter Major Minor Angle Thinness 
ratio 

1974 18791 90.073 153.652 2793.666 177.553 134.751 117.556 0.03 
1980 28230 110.81 145.989 3175.999 196.638 182.791 13.534 0.035 
1985 29261 111.134 145.825 3191.698 199.767 186.499 22.162 0.036 
1991 30186 111.66 146.896 3184.686 202.057 190.214 28.461 0.037 
1997 33230 112.253 145.356 2918.353 214.372 197.366 37.01 0.049 
2003 36100 111.225 141.955 3154.804 224.534 204.708 41.731 0.046 
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DISCUSSION 
 
Having the simulation calibrated, now we discuss 

some applications and the theoretical implication of the 
simulation. 

One of potential application of the simulation model 
is for the local city government planning agency to 
perform an assessment on the impact policy analysis 
such as putting additional constraint on the development. 
For example, zone management policies can be set as a 
constraint matrix where the flood prone areas are set 
prohibit additional development in these zones. The long 
term effect of the urban growth will eventually follow 
different paths and direction that can be interpolated 
using the simulation model. The detail of this application, 
however, shall be pursued in the future direction of this 
study. Knowing the constraint of development, three 
possible findings can be applied: 

 
1. To find the expected level of development at a 

certain place (from the center of development) at 
certain time. Given Tyx ),(=x , t , find ),( txλ  

2. To find the places where the development is 
expected at a certain level at a certain time. The 
answer is not a unique location. Given ),( txλ , t, 
find Tyx ),(=x   

3. To find out when the development level at a certain 
location will be expected to reach a certain level. 
Given ),( txλ , Tyx ),(=x , find t. 

 
Furthermore, the simulation results can be 

approximated theoretically as an exponential growth 
with radial diffusion. Taken the analogy of temporal-
spatial diffusion to urban growth, total diffusing 
substance, M  is analogue to total number of 
developments by the developer agents. Similar 
assumption to the simulation was taken that diffusion 
occurs in the direction of a decreasing gradient. The 
differential equation of such growth is discussed in 
(Banks, 1994) as shown in equation (5). 

 
2

2

N N N N
dt r r r

δ α
⎛ ⎞∂ ∂ ∂

= + +⎜ ⎟∂ ∂⎝ ⎠
                  (5) 

 
The term in the bracket is a basic diffusion equation 

while the last term in the right hand side represents the 
exponential growth. Notation N  is the magnitude of 
growing quantity (i.e. Area of developed cells), δ  is a 
dispersion coefficient (note that this is not the same 
value as the dispersion parameter of the simulation), r  is 
the radius and α  is the net growth rate. The solution of 
the equation is given by  

 

2

exp
4 4
M rN t

t t
α

πδ δ
⎛ ⎞

= −⎜ ⎟
⎝ ⎠

   (6) 

 
Taking the development as radial, the total amount of 

new developments outside the boundary ( )r R t=  at time 
t is denoted by P.  
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( , )2 exp
4R

RP N r t rdr M t
t

π α
δ
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∫                (7) 

 
Notation R stands for the radius of the expanding 

development which is defined as a circular area of new 
development. If the diffusion front or wave of 
development is defined by setting the exponent of the 
exponential equal to zero we have 

2

0
4
Rt

t
α

δ
− =  or 

 
2R t αδ=                   (8) 

 
The velocity of new development is given by 
 

2dRu
dt

αδ= =                   (9) 

 
The simulation without constraint will produce a 

radial growth as reported in (Teknomo et al, 2005). 
However, for radial growth, the area is 2A Rπ= . Thus, 
we have  

 

4
At

παδ
=                               (10) 

 
For Saga city, plotting as in Fig. 10 we have the 

relationship of square root of area with time to be 
 

1.53 2879.2A t= −                              (11) 
 
Where, area is measured in square pixels and time in 

year. Inputting equation 11 into equation 10 we have 
0.122 229.12 / tαδ = −  and the velocity of new 

development as 2 0.122 229.12 /u t= − . 
 
 

CONCLUSIONS 
 
Motivated by the need to comprehend zone 

management policies in lowland cities, we have built a 
stochastic urban cellular model. We have described the 
underlying phenomena, model development and cellular 
transformation rule and the parameters in urban growth 
terminologies. Simulating the model, we have 
understood that the model characteristics have radial 
growth with higher development near the initial seeds. 
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Instead of representing growth as vacant and occupied 
states, we have generalized it into an index of 
development that can be used for different purposes of 
modeling such as land value, constraint of development, 
or simply population and so on. Thus, the simulation 
model is suitable for understanding the city growth 
phenomena that has similar characteristics to the model.  

Emphasis on the calibration strategy of the 
simulation model using historical aerial photographs was 
elaborated toward image calibration, segmentation of 
developed cells, finding the neighborhood probabilities 
and finding the other parameters of the model. A case 
study of Saga lowland city in Japan was demonstrated. 
The link of the model with the mathematical model was 
also discussed. The analysis we have performed 
suggested that prediction of the growth is unreliable but 
interpolation of the growth between the knowing years 
can be done with great accuracy.  

The model itself is quite generic to be transferable to 
any other concentric cities that are suitable with the 
assumption of the model.  

Statistical goodness of fit for this model should be 
considered for further study. Further research may also 
follow the direction on establishing the linkage of land 
use and transportation, as well as more application of 
zone management and developer’s net gain from the 
urban growth. 
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