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ABSTRACT: The traditional elastoplastic constitutive equations can not generally describe the inelastic deformation 
considering the magnitude and the direction of the stress rate. Therefore, the stiffness is unrealistically predicted in the 
nonproportional loading. The tangential-subloading surface model by Hashiguchi and Tsutsumi (2001) can describe the 
dependence of both the magnitude and the direction of the inelastic strain rate on the stress rate. In this paper, the tangential 
strain rate induced by the stress rate component tangential to the yield surface is incorporated into the extended subloading 
surface model to describe the cyclic loading behavior. The model is applied to the prediction of the deformation behavior of 
sand subjected to general cyclic loading including the proportional and nonproportional loadings. The validity of the model is 
verified by comparing with experimental results. 
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INTRODUCTION 
 

The breakwater is the important structure in order to 
keep functions and safety of various facilities in the 
lowland. However, the soft ground in the lowland can not 
bear the weight of the breakwater. Hence the soft soils in 
the lowland are frequently replaced by sand to prepare 
foundation ground. The sand foundation is required to have 
strength for not only the dead weight of the breakwater but 
also the cyclic loading by the wave and seismic forces. 
Further, the nonproportional loading occurs in combining 
these forces. It is also important to describe the 
elastoplastic behavior in order to predict the deformation 
problem, which such force causes. 

A rigorous formulation of the unconventional 
elastoplastic constitutive equation (Drucker, 1988) enabling 
the description of plastic strain rate due to the stress rate 
inside the yield surface have been attained by the 
subloading surface model (Hashiguchi and Ueno, 1977; 
Hashiguchi, 1980). The subloading surface which always 
passes through the current stress point and is similar to the 
yield surface, renamed the normal-yield surface, is 
assumed inside the normal-yield surface. The model can 
describe the anisotropy of the material and the plastic 
deformation is described by adopting the associated flow 
rule. The subloading surface model has also been extended 

to describe the cyclic loading behavior (Hashiguchi, 1989) 
by letting the similarity-center of the normal-yield and the 
subloading surfaces translate with the plastic deformation, 
which is called the extended subloading surface model. The 
model fulfills the mechanical requirements for constitutive 
equations (Hashiguchi, 1993a, 1993b), i.e. the continuity 
condition, the smoothness condition, the work rate-stiffness 
relaxation and the Masing effect. It has been applied to the 
prediction of deformation behavior of soils (Topolnicki, 
1990; Hashiguchi and Chen, 1998) and metals (Hashiguchi 
and Yoshimaru, 1995). 

However, in the traditional elastoplastic constitutive 
equations, unrealistically stiff response is predicted for the 
analysis of the plastic instability phenomena in which the 
stress path deviates from the proportional loading since the 
plastic strain rate is independent of the magnitude and the 
direction of the stress rate. Therefore, the subloading 
surface model has been further extended so as to describe 
the strain rate, called the tangential strain rate, induced by 
the stress rate component tangential to the subloading 
surface, called the tangential stress rate (Hashiguchi and 
Tsutsumi, 2001). Such a model is called the tangential-
subloading surface model. The model can describe the 
dependence of both the magnitude and the direction of the 
inelastic strain rate on the stress rate. The subloading 
surface model with the tangential strain rate, i.e. the 
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tangential-subloading surface model, has been applied to 
the prediction of the bifurcation phenomena in deformation 
of soils (Hashiguchi and Tsutsumi, 2001, 2003; 
Khojastehpour and Hashiguchi, 2004a, 2004b) and metals 
(Hashiguchi and Protasov, 2004) predicting the formation 
of shear bands and/or diffuse modes of deformation as the 
bulging and buckling. 

In this article, the tangential strain rate is incorporated 
into the extended subloading surface model to describe the 
cyclic loading behavior. The extended subloading surface 
model with the tangential strain rate is then applied to the 
prediction of the deformation behavior in sand subjected to 
cyclic loading under not only the proportional loading but 
also the nonproportional loading. The validity of the model 
is verified by comparing with the experimental results. 

The signs of stress (rate) and strain rate (a symmetric 
part of velocity gradient) components are taken to be 
positive for tension. 
 
 
OUTLINE OF THE TANGENTIAL-SUBLOADING 
SURFACE MODEL 
 

In this section the extended subloading surface model 
with the tangential stress rate effect (Hashiguchi and 
Tsutsumi, 2001) is reviewed briefly. This model will be 
later applied to the analysis of the deformation behavior in 
soils subjected to the cyclic loading under the 
nonproportional loading. 

Denoting the current configuration of material particle 
as x and the current velocity as v, the velocity gradient is 
described by ≡ ∂ /∂L v x , by which the strain rate and the 
continuum spin are defined as T(≡ ( + )/ 2 )D L L  and 

T(≡ ( − )/ 2 )W L L , respectively, T( )  standing for the 
transpose. 

Now let it be assumed that the strain rate D  is 
additively decomposed into the elastic strain rate eD  and 
the inelastic strain rate iD  which is further decomposed 
into the plastic strain rate pD  and the tangential strain rate 

tD , i. e. 
 

 = e i+D D D ,                (1) 
 
 =i p t+D D D ,                (2) 
 
where the elastic strain rate eD  is given by 
 e −1=D E σo .                (3) 
 
σ  is the Cauchy stress and ( )

o
 indicates the proper 

corotational rate with the objectivity (e.g. Dafalias, 1985; 
Zbib and Aifantis, 1988) and the fourth-order tensor E is 
the elastic modulus given in the Hooke’s type as 

2
3= ( ) ( )jkl ij kl ik jl il jkE K G Gi δ δ δ δ δ δ− + + ,  (4) 

 
where K and G are the bulk and shear modulus, 
respectively, which are functions of stress and internal state 
variables in general and ijδ  is the Kronecker’s delta, i.e. 

= 1ijδ  for =i j  and = 0jiδ  for i j≠ . 
 
Normal-yield and Subloading Surfaces 
 

Assume the yield condition: 
 
 ˆf F Η( , ) = ( )Ησ ,                (5) 
where 
 ˆ −≡ ασ σ .              (6) 
 

The second-order tensor α  is the reference point inside 
the yield surface, which plays the role of the kinematic 
hardening variable as it translates with the plastic 
deformation. The second-order tensor H  and the scalar H  
are the inherent or induced anisotropic hardening and 
isotropic hardening/softening variables, respectively. Let it 
be assumed that the function f  is homogeneous of degree 
one in the tensor σ̂ , satisfying ˆf s( , )Ησ = ˆsf ( , )Ησ  for 
any nonnegative scalar s . Then, if H =constant, the yield 
surface keeps the similar shape and translates with α . The 
inherent and the induced anisotropy of soils can be 
described concisely by the rotational hardening, whilst the 
kinematic hardening is inapplicable to soils as has been 
described by Hashiguchi (2001). 

Hereinafter, let the elastoplastic constitutive equation be 
formulated in the framework of the unconventional 
plasticity defined by Drucker (1988). The interior of yield 
surface is not a purely elastic domain but plastic 
deformation is induced by the rate of stress inside the yield 
surface. Thus, the conventional yield surface is renamed as 
the normal-yield surface, since its interior is not regarded 
as a purely elastic domain in the present model. 

Now, let the subloading surface (Hashiguchi and Ueno, 
1977; Hashiguchi, 1980, 1989) be introduced, which 
always passes through the current stress σ  and keeps the 
similarity and the configuration of similarity to the normal-
yield surface. All lines passing through arbitrary conjugate 
pair of points on these surfaces joint at the specified point, 
i.e. the similarity-center which will be denoted by s . In 
addition, let it be assumed that the subloading surface, 
which plays the role of loading surface, does not intersect 
the normal-yield surface. Therefore, the similarity-center 
has to be inside the normal-yield surface. The ratio of the 
size of the subloading surface to that of the normal-yield 
surface will be denoted by  0R R( ≤ ≤ 1)  which can be 
regarded as the measure of approaching degree to the 
normal-yield state and is thus called the normal-yield ratio. 
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The conjugate stress yσ on the normal-yield surface for the 
current stress σ  on the subloading surface due to the 
similarity is given by 
 

{ },    (y yR R
R
1

− (1− ) − ( − ))= s s sσ σ σ = σ         (7) 

 
By substituting Eq. (7)  into Eq. (5) with regard to σ̂  as 

yσ , the subloading surface is described as 
 
 f RF Η( , ) = ( )Ησ ,                (8) 
 
where 
 
 −≡ ασ σ ,                (9) 
 ( )R≡ − −α s s α .                (10) 
 
Here α  inside the subloading surface is the conjugate point 
of α  inside the normal-yield surface. The normal-yield and 
the subloading surfaces are illustrated in Fig. 1. 
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Fig. 1 Normal-yield and subloading surfaces 
 
 
Evolution Rule of Normal-yield Ratio 
 

Taking account of the fact that a stress asymptotically 
approaches the normal-yield surface, i.e. the subloading 
surface approaches the normal-yield surface in the plastic 
loading process, let the evolution rule of the normal-yield 
ratio R  be given by 
 
 || ||  for p pR U= ≠D D 0i ,             (11) 
 
where U  is the monotonically decreasing function of R , 
satisfying 

 

          
=  for   = 0,
=  0    for   =  1,

( 0   for  1).< >

U R
U R
U R

+∞ 





             (12) 

 
 ( )i  stands for the material-time derivative, ||  ||  stands for 

the magnitude, i.e. T|| || tr( )=T TT , tr ( )  denoting the 
trace. Let the function U  satisfying Eq. (12) be simply 
given by 
 
 lnRU u R= − ,             (13) 
 
where Ru  is a material constant. 
 
Translation Rule of Similarity-center 
 

The similarity-center s  is required to translate with the 
plastic deformation in order to describe realistically the 
cyclic loading behavior exhibiting the Masing effect 
(Masing, 1926; Mroz, 1966; Hashiguchi, 1993b). The 
translation rule of the similarity-center s  is given as 

 
ˆ1 ( , ) ˆ|| || trp

s
fc F

R F
  ∂ = + + −    ∂   

s Hs D α H s
H

σ oio o%
, (14) 

 
where 
 
 ≡ − sσ σ% ,             (15) 
 ˆ ≡ −s s α .             (16) 
 

sc  is a material constant. 
 
Plastic Strain Rate 
 

The time-differentiation of Eq. (8) has the extended 
consistency condition for the subloading surface: 

 , , ,tr tr tr f f f     ∂ ( ) ∂ ( ) ∂ ( )
− +          ∂ ∂ ∂     

H H Hα H
H

σ σ σσσ σ
o oo  

 = || || +pU F RF H′D i ,             (17) 
where 

 dFF
dH

′ ≡ .             (18) 

 
Assume the associated flow rule for the subloading 

surface 
 
 p λ=D N ,      (19) 

 , ,      || ||f f∂ ( ) ∂ ( )
≡ ( = 1)

∂ ∂
H HN Nσ σ

σ σ ,      (20) 
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where λ  is the positive proportionality factor. The second-
order tensor N  is the normalized outward-normal of the 
subloading surface. 

The substitution of Eq. (19) into the extended 
consistency condition Eq.  (17) leads to 
 

 tr 

p
λ=

M
( )Nσo ,             (21) 

where 
 

 ( , )tr tr +p
F f UM h
F RF R

  ′ 1 ∂ ≡ − +     ∂     

HΝ h a
H
σ σ .   (22) 

 
h , h  and a  are the functions of the stress, plastic 
internal state variables and N  in degree one. These 
functions are related to Hi , H

o
 and αo  by 

 

 ,Hh
λ λ

≡ ≡
Hh

i o
,             (23) 

 ( ) ( )U R
λ

≡ = − − − −
αa z s α z a
o

,        (24) 

 
λ

≡
αa
o

,        (25) 

 
ˆ1 ( , ) ˆtrs

fc F h
R Fλ

 ∂ ′≡ = + + −  ∂  

s s Hz a h s
H

σo %
       (26) 

 
since H

i
, H

o
 and α

o
 include λ  in degree one. 

 
Tangential Strain Rate 
 

The tangential strain rate is induced by the stress rate 
component tangential to the subloading surface, called the 
tangential stress rate, obeying the Rudnicki and Rice’s 
(1975) conclusion that “no vertex can result from 
hydrostatic stress increments” based on the consideration of 
the sliding mechanism in the fissure model. 

The tangential strain rate tD  is formulated as 
 

 t
t

T
∗1

=D σo ,             (27) 

 
where T  is a monotonically decreasing function of R  
satisfying the following condition. 
 

 
=  for   = 0,
=      for   = .

T R
T Rξ

+∞ 
  1 

             (28) 

 
ξ  being a material function of the stress and the plastic 
internal variables in general. The function T , called the 
tangential inelastic modulus, satisfying Eq. (28) is simply 

given by 
 

 = bT
R
ξ ,             (29) 

 
where b (≥ 1)  is a material constant. The second-order 
tensor t

∗σo  is given as follows: 
 

 nt
∗∗ ∗≡ −σ σ σo o o ,             (30) 

 tr( )n
∗ ∗∗ ∗≡ n nσ σo o ,             (31) 

 ,      tr m mσ σ∗ 1
≡ − ≡

3
Iσ σ σio o , (32) 

 ( , ) ( , )      (|| || 1)
|| ||

f f∗ ∗ ∗
∗ ∗

∗
∂ ∂   ≡ = =   ∂ ∂   

NH Hn n
N

σ σ
σ σ

, (33) 

 ( , ) ( , )      (|| || 1)f f∗
∗ ∗∂ ∂   ≡ ≠   ∂ ∂   

H HN Nσ σ
σ σ . (34) 

 

( )∗  stands for the deviatoric part, I  and ∗n  are the 
identity tensor and the normalized deviatoric outward-
normal tensor of the subloading surface, respectively. The 
stress rate t

∗σo  is called the deviatoric tangential stress rate 
and fulfills the following equations. 
 

 tr t
∗( ) = 0Nσo , tr t

∗ = 0σo .             (35) 
 

The deviatoric tangential stress rate t
∗σo  is directed 

toward the tangential line of the closed curve formed by the 
intersection of the subloading surface and the deviatoric 
stress plane as illustrated in Fig. 2. 
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Fig. 2 The tangential stress rate t∗σo  illustrated in the 
principal stress space. 
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The strain rate D  is given from Eqs. (1), (2), (3), (19) 

and (27) as 
 

 tr 
t

p TM
∗−1 ( ) 1

= + +
ND E Nσσ σ

o
o o .         (36) 

 
The inverse expression of Eq. (36) is given as 
 

1 tr( )
2 tr( )1 || ||pG M
T

∗

∗

  − +
+  +

NED= ED EN n
NNEN

σo  

 2 1 1tr( ) tr tr( )
3 3 || ||p

G M
T

∗

∗

   − +  
   

nEN I N EN
N

 

 2 1 1tr( ) tr
3 3 || ||

G
T

∗

∗

 + −   

nED I N
N

. (37) 

 
The positive proportionality factor in the associated 

flow rule (19) is expressed in terms of the strain rate D , 
rewriting λ  as Λ , as follows: 
 

 tr 
tr ( )pM

Λ =
+
(NED)

NEN
.             (38) 

Loading Criterion 
 

The loading criterion is given by the positiveness of the 
proportionality factor Λ  as follows (Hashiguchi, 2000): 
 

 
p

p

Λ

Λ

≠ : > 0,


= : ≤ 0.

D 0

D 0
             (39) 

 
 
CONSTITUTIVE EQUATION OF SOILS 
 
Material Functions 
 

Based on the equations formulated in previous section 
and the model proposed by Hashiguchi and Chen (1998), 
the particular forms of the material functions for soils will 
be given in this section. Hereafter, we focus our attention 
on the behavior of the saturated soils, and then let the 
Cauchy stress σ  be meant the effective Cauchy stress, 
excluding a pore pressure u  from the total Cauchy stress 
T , which is defined by 
 
 u= +Τ Iσ ,             (40) 
 
where u  is taken to be positive for compression. 

Let the stress function of the subloading surface of Eq. 

(8) be given for soils as 
 

 f p χ 2( , ) = (1+ )βσ ,             (41) 
where 

 p∗ ≡ + Iσ σ ,  tr p 1
≡ −

3
σ ,  || ||

m
χ ≡

η ,          (42) 

 ≡ −η Q β ,  
p

∗
≡Q σ .             (43) 

 
The inherent or induced anisotropic hardening variable H  
is selected as the rotational hardening variable β . m  is the 
stress ratio in the critical state, which is generally a 
function mf  of 

 
3

3
trsin 6
|| ||

θσ3 ≡ −
 η

η
,              (44) 

 
including the material constant cφ  referred to the frictional 
angle in the critical state for the axisymmetric compression, 
i.e. 
 
 (sin  ; )m cm = f σθ φ  3 .               (45) 

Let the function of the similarity-center surface be 
described by the following equation in a similar form as Eq. 
(41) of the subloading surface: 
 
 ˆ s sf p χ 2( , ) = (1+ )βσ ,               (46) 
 
where 
 

 ˆ ˆ sp∗ ≡ +s s I ,  ˆtr sp 1
≡ −

3
s ,  

|| ||s
s

sm
χ ≡

η
,       (47) 

 s s≡ −η Q β ,  
ˆ

s
sp

∗
≡

sQ .       (48) 

 
sm  is a function mf  of 

 

 
3

3

trsin 6
|| ||

s

s
sθ3 ≡ −

 η

η
,             (49) 

 
including the material constant cφ , i.e.  
 
 (sin  ; )s m s cm = f θ φ  3 .             (50) 
 

The evolution rule of rotational hardening variable β  is 
given by 
 

 || || || ||p
r b= b ∗β D η η

o
,             (51) 
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where 
 

 b bm t −≡η β ,  
|| ||

t ≡
η
η

.             (52) 

 
bm  is also a function mf  of σθ  including the material 

constant bφ , i.e. 
 
 (sin  ; )b m σ bm = f θ φ  3 .             (53) 
 

rb  and bφ   are material constants describing the intensity 
of rotational hardening and the limitation of the rotation of 
subloading surface, called the rotational limit angle, 
respectively. 

The isotropic hardening/softening function F  is given 
by 
 

 exp HF = F
ρ − γ0

 
 
 

,             (54) 

 
where F0  is the initial value of F . ρ  and γ  are material 
constants describing the slope of the normal-consolidation 
and the swelling lines, respectively, in the ( ln v , ln p ) 
space ( v : volume) (Hashiguchi, 1974, 1995). The 
evolution rule of the isotropic hardening/softening variable 
H  applicable to not only clays but also sands is given by 
 

 || |||| ||p p
v dH D m

p
µ

∗
∗  

= − + −  
 

D σi , (55) 

 
where 
 
 tr p p

vD ≡ D , (56) 

 tr p 1
≡ −

3
σ . (57) 

 
dm  is given as 

 
 (sin  ; )d m dm = f σθ φ  3 , (58) 
 
where 
 

 
3

3
trsin 6
|| ||

σθ
∗

∗
3 ≡ −

 σ
σ

. (59) 

 
µ  and dφ   are material constants describing the isotropic 
hardening/softening behavior induced by the plastic 
deviatoric deformation. The softening and the hardening 
are induced by the plastic deviatoric deformation for the 
state of stress inside and outside, respectively, the surface: 

 

 || ||
dm

p

∗
=

σ , (60) 

 
which is called the shear boundary surface. 

Let the function ξ  in the tangential inelastic modulus 
T  be assumed as  
 

 c
p

a
ξ

χ
= , (61) 

 
where a  and c  are material constants. 

The elastic bulk and shear moduli are given as 
 

 pK
γ

= ,  νG K
ν

3(1− 2 )
=

2(1+ )
, (62) 

where ν  is Poisson’s ratio. 
 

Yield Surface 
 

It is desirable for the shape of the yield surface to fulfill 
convexity and smoothness in order to answer the principle 
of maximum plastic work (Hill, 1950) and the linear 
relation between stress rate and strain rate. In this study, the 
following equation proposed by Hashiguchi (Hashiguchi, 
2002) is adopted as the function m  fulfilling the 
aforementioned requirements. 
 

 
sin

(3 sin  )(8 sin 3 )
c

c
m

σ

φ
φ θ

14 6
=

− −
. (63) 

 
The convex-conical surfaces || || m=Q  of Eq. (63) in 

- planeπ  for cφ =15, 30 45° are depicted in Fig. 3 
comparing with the Mohr- Coulomb failure criterion. 

15°
30°

45cφ °=

1σ

3σ

2σ

σθ

 
 

Fig. 3 π-sections of conical surfaces by Hashiguchi 
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The surfaces fulfill the smooth convexity for any 
frictional angle cφ  as shown in the figure, while it gives 
rise to a slightly higher frictional angle in the axisymmetric 
extension state than that in the axisymmetric compression 
state for a high frictional angle. 

Here, Eqs. (50), (53) and (58) are given, respectively, as 
follows: 
 

 
sin  

(3 sin  )(8 sin 3 )
c

s
c s

m
φ

φ θ
14 6

=
− −

, (64) 

 
sin

(3 sin  )(8 sin3 )
b

b
b

m
σ

φ
φ θ

14 6
=

− −
, (65) 

 
sin

(3 sin  )(8 sin 3 )
d

d
d

m
σ

φ
φ θ

14 6
=

− −
. (66) 

 
 
COMPARISONS WITH EXPERIMENTS 
 
Proportional Loading 
 

The experimental results (Tatsuoka et al. 1986; 
Paradhan et al. 1989) on Toyoura sand widely used in 
Japan for the study of the strength and deformation 
characteristics of sands are used for comparison with 
calculations. The sand consists mostly of quartz (around 
90%) and chert (around 4%) (Yoshimi et al., 1978), and no 
fines content less than 74μm are included. The particles 
have an angular to sub-angular shape. The physical 
properties are listed in Table 1. The experimental results for 
the cyclic loading are the triaxial tests data performed 
under the drained and undrained conditions. The test 
procedures and the specimen preparation methods are 
described by Tatsuoka et al. (1986) and Paradhan et al. 
(1989), respectively. 

The predicted results for the axisymmetrically cyclic 
loadings under the undrained condition for the dense 
specimen and the drained condition for the loose specimen 
are compared in Fig. 4 and 5 respectively with the 
experimental results. The experimental results in Fig. 4 are 
indicated for the first and third cycles. The material 
constants and the initial values for the dense and loose 
specimens of Toyoura sand are selected as follows: 

 
Table 1 Physical properties of Toyoura sand 

(Paradhan et al. 1989) 
 

 Toyoura sand 
Mean grain size 0.16 mm 
Uniformity coefficient 1.46 
Specific gravity 2.64 
Maximum void ratio 0.977 
Minimum void ratio 0.605 

Dense specimen 

0 0 0

32.0 ,  0.0021,  0.0011,  15,  0.3,

100,  20 ,  100,  28 ,  0.9,
,  400.0kPa,  29.4 kPa.

c R

s b r d

u

c b
F

φ ρ γ ν

φ φ µ

= = = = =

= = = = =
= = = −s 0 Iσ

o

o o  

 
Loose specimen 

0 0 0

32.0 ,  0.005,  0.0017,  10,  0.3,

1,  17 ,  80,  30 ,  0.9,
,  30.0kPa,  29.4 kPa.

c R

s b r d

u

c b
F

φ ρ γ ν

φ φ µ

= = = = =

= = = = =
= = = −s 0 Iσ

o

o o  
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a rq = σ σ− , aσ  : axial stress, rσ  : radial stress 
p  : mean principal stress, aε  : axial strain 

 
 

Fig. 4 The cyclic triaxial test with the constant stress 
amplitude q = ± 98 kPa under the undrained condition for 
the dense specimen (Tatsuoka et al. 1986). 
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p
vε  : plastic volumetric strain, rε  : radial strain 

 
Fig. 5 The cyclic triaxial test performed at a constant 

(= 98.1kPa)p  under drained condition for the loose 
specimen (Paradhan et al. 1989). 

 
 
 

The predicted strength and deformation simulate well 
with the experimental results for both the undrained and 
drained conditions, and then the hysteresis loops due to the 
cyclic loadings are realistically described. Thus, the cyclic 
loading behavior is properly described by the extended 
subloading surface model which has several pertinent 
concepts, i.e. an associated flow rule, a subloading surface, 
rotational hardening, the translation of the similarity-center 
of the normal-yield and the subloading surfaces. 
 
Nonproportional Loading 
 

The loading of the circular stress path in - planeπ  in 
which the deformation of the tangential stress rate direction 
is remarkably generated is studied in the analysis of the 
nonproportional loading. The test data under the drained 
condition by the true triaxial apparatus for Hostun sand and 
Reid Bedford sand (Saada and Bianchini, 1989) are used 

for comparison with calculations. Hostun sand and Reid 
Bedford sand are a poorly graded material with uniform 
grain size. The tested specimens were prepared in the dense 
state with the relative density Dr =97% for the Hostun sand 
and in the medium state with the relative density Dr =47% 
for Reid Bedford sand under the initial isotropic states of 
stress 0σ =−100 I kPa, respectively. The physical properties 
of these sands are listed in Table 2. 

The co-ordinate system ( x x x1 2 3, , ) for the true triaxial 
test apparatus is taken as shown in Fig. 6 where σ σ σ1 2 3, ,  
are principal stresses. 

For the loading of the circular stress path in - planeπ , 
the principal stresses are varied individually leading to the 
circular stress path in - planeπ , keeping the magnitude of 
the deviatoric stress || ||∗σ  and the mean stress mσ  
constant as shown in Fig. 7. 

 
Table 2 Physical properties of Hostun sand and Reid 
Bedford sand. 

 
   Reid Bedford sand Hostun sand 

Grain density 2.65 g/cm3 2.67 g/cm3 

Maximum density 1.74 g/cm3 1.66 g/cm3 

Minimum density 1.46 g/cm3 1.35 g/cm3 

Mean grain size 0.25mm 0.35mm 

Uniformity coefficient 1.47 1.68 
 
 
 

( π-Plane)

2σ

3σ

1σ σθ σ

3x

1x
2x

 
 

Fig. 6  Rectangular co-ordinates (x1, x2, x3) and the 
variables for the true triaxial test apparatus 
 
 

The principal stresses are varied sinusoidally as 
follows: 
 

= || || cosm σσ σ θ∗
1

2
+

3
σ , (67) 

 = || || cosm σσ σ θ π∗
2

2 2 + − 3 3 
σ , (68) 
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Fig. 7 Circular stress path in deviatoric stress plane 

 
 

= || || cosm σσ σ θ π∗
3

2 2 + + 3 3 
σ . (69) 

 
The stress changes are given by 
 

= || || sin σ σσ θ θ∆ ∆∗
1

2
−

3
σ , (70) 

 = || || sin σ σσ θ θ∆ π ∆∗
2

2 2 − − 3 3 
σ , (71) 

 = || || sin σ σσ θ θ∆ π ∆∗
3

2 2 − + 3 3 
σ . (72) 

 
|| ||∗σ  and mσ  are 420kPa and −500kPa for Hostun sand 
and 262kPa and −345kPa for Reid Bedford sand, 
respectively. The stress phase angle σθ  is varied from 30 
to 750 degree realizing the two cycles for both Hostun and 

Reid Bedford sands 
The material constants and the initial values for Hostun 

sand and Reid Bedford sand are respectively selected as 
follows: 

 
Hostun sand 

0 0 0

30.0 ,  0.008,  0.0035,  60,  0.3,

50,  24 ,  40,  31 ,  1,
20 kPa,  600.0kPa,  100.0 kPa

0.018,  5,  1.

c R

s b r d

u

c b
F

a b c

φ ρ γ ν

φ φ µ

= = = = =

= = = = =
= = = −

= = =
s I Iσ

o

o o
 

 
Reid Bedford sand 

0 0 0

27.0 ,  0.0055,  0.0018,  34,  0.3,

19,  20 ,  70,  27 ,  0.8,
,  425.0kPa,  100.0 kPa

0.009,  1,  1.

c R

s b r d

u

c b
F

a b c

φ ρ γ ν

φ φ µ

= = = = =

= = = = =
= = = −

= = =
s 0 Iσ

o

o o
 

The strain paths in - planeπ  predicted from the elastic 
strain rate and the plastic strain rate by the extended 
subloading surface model without the tangential strain rate 
for Hostun sand and Reid Bedford sand are respectively 
compared in Fig. 8 with the experimental results. It is 
observed in both the experimental results and the predicted 
results that the strain paths with the shape of two triangles 
by two cyclic loadings are depicted. The triangles for the 
experimental strain paths relatively incline in the counter-
clockwise direction with those for the predicted results, and 
the predicted deformation behavior are undoubtedly 
different from the experimental results. The stiffness of 
stress rate direction in the counter-clockwise is specifically 
predicted high. 

The direction and magnitude of the inelastic strain rate 

Experimental result Prediceted result
0.01 0.02
0.03 0.03
軸

2ε

3ε

1ε

.03

.02

.01

0

(Hostun sand)

Experimental result Prediceted result
0.01 0.02
0.02 0.02
軸

2ε

3ε

1ε

.02

.01

0

(Reid Bedford sand)
 

 
Fig. 8 Strain paths in the - planeπ  by the extended subloading surface model without the tangential strain rate 
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iD  at the stress phase angle = 300σθ
o  predicted by the 

extended subloading surface model with the tangential 
strain rate for Hostun sand is represented as the vector in 
Fig. 9. The stress path and vectors on the plastic and 
tangential strain rates pD , tD  are also represented in the 
figure. The direction of the inelastic strain rate iD  is 
induced toward the direction of the stress rate σo  from the 
direction perpendicular to the subloading surface by the 
tangential strain rate effect as shown in Fig. 9. The strain 
paths in - planeπ  for Hostun sand and Reid Bedford sand 
predicted by the extended subloading surface model with 
the tangential strain rate are shown in Fig. 10. It is observed 
that the stiffness of the stress rate direction is relaxed, and 

the strain paths of the experimental results for both Hostun 
sand and Reid Bedford sand are realistically predicted. The 
deformation behavior in the first and second cycles is also 
properly described. 

The variations of the predicted principal strains 
1ε , 2ε , 3ε  for Hostun sand and Reid Bedford sand against 

the stress phase angle σθ  are compared in Fig. 11 with the 
experimental results. The variations of principal strains are 
well simulated for both Hostun sand and Reid Bedford sand, 
respectively. 

On the other hand, the strain paths in the - planeπ  
calculated by the plastic strain rate and the tangential strain 
rate for Hostun sand are respectively shown in Fig. 12. The 

 

Experimental result Prediceted result
0.01 0.02
0.03 0.03
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3ε
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0

(Hostun sand)

Experimental result Prediceted result
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0.02 0.02
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1ε
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(Reid Bedford sand)

1σ 2σ
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p∗D

tD

i∗D
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β

Subloading surface Stress path

s

Fig. 9 The inelastic strain rate Di  in π -plane at θσ=300°for Hostun sand.

Fig. 10 Strain paths in the π -plane by the extended subloading surface model with the tangential strain
rate.  
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strain path due to the plastic strain rate exhibits the shape as 
if the subloading surface in the - planeπ  is rotated π /2 in 
the clockwise rotation because the plastic strain rate occurs 
perpendicular to the subloading surface according to the 
associated flow rule. The tangential strain rate is induced 
by the deviatoric stress rate tangential to the subloading 
surface, and the strain path exhibits the similar shape of the 
subloading surface in the - planeπ . For nonproportional 
loading, it is required to adopt the equation of yield surface 
with the appropriate shape, since the stress translates along 
the yield surface and the predicted inelastic strain rate is 
directly dependent on the shape of the yield surface. 
Especially, for the nonproportional loading in the - planeπ  
such as in the present study, the equation of yield surface 
with appropriate cross-sectional shape in the - planeπ  
should be incorporated into the constitutive equation. 

CONCLUSIONS 
 

The extended subloading surface model with the 
tangential strain rate was applied to the cyclic loading 
behavior in the nonproportional loading for sands. The 
cyclic loading behavior in the proportional loading are 
realistically predicted by the extended subloading surface 
model which has several pertinent concepts, i.e. an 
associated flow rule, a subloading surface, rotational 
hardening, the translation of the similarity-center. On the 
other hand, for the cyclic loading under the nonproportional 
loading of the circular stress path in - planeπ , the extended 
subloading surface model which is independent of the 
magnitude and direction of the stress rate in the inelastic 
strain rate predicts the stiffness of the direction of stress 
rate high. The subloading surface model with the tangential 

. 
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Fig. 11 Variation of three principal strain 1ε , 2ε , 3ε  against stress phase angle σθ . 
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strain rate properly describes the deformation of the stress 
rate direction and then predicts realistically the 
experimental deformation behavior. The extended 
subloading surface model with the tangential strain rate is 
applicable to the realistic prediction of the cyclic loading 
behavior for the nonproportional loading. Besides, it is 
indicated that the yield surface with the appropriate shape 
should be incorporated into the constitutive equation for the 
analysis of the nonproportional loading since the stress 
translates along the yield surface. 
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