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ABSTRACT: In this paper, it is reiterated that the Roscoe and Poorooshasb (1963) formulation of the stress strain behaviour 
of normally consolidated clays is indeed in a more generalized form which is easily amenable to incorporate deformations 
under various degrees of drainage and can be extended to include cyclic loading and time effects beyond the primary phase of 
deformation. Also, the formulation can be used for stress states below the state boundary surface to include lightly 
overconsolidated and heavily overconsolidated clays. Particularly, it is shown here that Cam Clay model of Roscoe et al. 
(1963) and Modified Cam Clay model of Roscoe and Burland (1968) as based on energy balance equations and the normality 
concept can be considered as the special cases of the original formulation of Roscoe and Poorooshasb (1963). In order to 
achieve this, all theories are presented in similar mathematical forms, adopting the same formulation of Roscoe and 
Poorooshasb (1963).  Modified Cam Clay Model of Roscoe and Burland, and the Roscoe and Poorooshasb theory made 
identical predictions of the shape of the state boundary surface, the pore pressure development during undrained behaviour, 
and the volumetric strain in the drained tests for all types of applied stress paths. Also, Modified Cam Clay model was only 
successful in predicting the shear strains along radial stress paths. For non-radial stress paths, Modified Cam Clay model 
needed an additional set of constant deviator stress yield loci, and when such a set was incorporated, the prediction from 
Modified Cam Clay model was the same as the original prediction of Roscoe and Poorooshasb (1963). 
 
Keywords: Energy balance equation, normality concept, incremental stress-strain theory. 
 
 
INTRODUCTION 
 

Soon after the original contribution of Roscoe and 
Poorooshasb (1963) on the correlation of the undrained and 
drained behaviour of normally consolidated clays in the 
axi-symmetric triaxial apparatus, extensive developments 
have taken place in formulating elasto-plastic stress strain 
models for cohesive and cohesionless soils, however, the 
relative importance of the more generalized form of Roscoe 
and Poorooshasb (1963) work is only presented in a very 
brief or cursory form in many of the subsequent textbooks 
by well known authors on “Critical State Soil Mechanics”. 
Indeed nowadays, the term “Critical State Soil Mechanics” 
predominantly implies a particular form of the “plastic 
potential surface” which in conjunction with a coinciding 
“yield surface” leads to a rather special type of the 
constitutive equation describing the flow of granular media 
(Poorooshasb 2000). Prior to the classical work of Roscoe 
and Poorooshasb (1963), all the research work was 
primarily concerned with the stress-volumetric strain 
relationship for soils as measured in the various types of 
tests. The position in 1960 was well summarised by Henkel 
(1960), “….. so far it has not been possible to relate shear 
strains in the various types of tests. For a complete 
understanding of the stress-strain behaviour of clays, it is 
necessary that the shear stresses and the shear strains be 
related. Until this problem is solved it will not be possible 
to examine in any fundamental way, the deformation 
behaviour of clays”. This clearly illustrates the milestone 

contribution of the Roscoe and Poorooshasb (1963) 
formulation. 

This paper expresses the three classical theories of 
Roscoe and Poorooshasb (1963), Cam Clay model (Roscoe 
et al. 1963), and Modified Cam Clay model (Roscoe and 
Burland, 1968), as developed for normally consolidated 
clays, in similar forms and then examine the implication of 
the energy balance equation used in the Roscoe and 
Burland theory and the normality concept in achieving a set 
of volumetric yield loci from which contributions are 
derived for the volumetric and shear strains. Later work by 
Dafalias et al. (1987), Atkinson et al. (1987) and others, 
also formulated the energy balance equation in a form 
similar to Roscoe et al. (1963) and Roscoe and Burland 
(1968), so that the plastic strain increment ratio was still 
dependent on the stress ratio. Notable difference was the 
work of Pender (1978), where a realistic plastic strain 
increment ratio was formulated for clays to be dependent on 
both the mean normal stress and the stress ratio, for 
overconsolidated states. It appears that, Modified Cam Clay 
model could predict the strains in radial type of stress paths 
while for non radial types, the shear strains can only be 
predicted correctly by the incorporation of a second set of 
constant q yield loci. The use of the two sets of yield loci 
makes the predictions from Modified Cam Clay model the 
same as the original Roscoe and Poorooshasb (1963) theory. 
The concept of the bounding surface model is more a 
sophisticated version of the double yield loci approach used 
in the revised version of Modified Cam Clay model. With 
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the use of only the volumetric yield loci, the strains in 
radial type of stress paths only can be predicted 
successfully using Modified Cam Clay model. These 
conclusions are well supported by the extensive laboratory 
tests performed by Balasubramaniam (1969) at Cambridge 
University on re-sedimented specimens of Kaolin tested 
under a wide range of applied stress paths with stress states 
below and on the state boundary surface.  Also the 
subsequent work at the Asian Institute of Technology on 
undisturbed samples of Bangkok clay, has further 
confirmed these findings (Balasubramaniam, 1975; 
Balasubramaniam and Chaudhry, 1978; Balasubramaniam et 
al., 1992; Balasubramaniam et al., 1999). The Roscoe and 
Poorooshasb (1963) formulation for undrained behaviour 
under quasi-static repeated loadings were presented in 
Balasubramaniam and Chui (1976). 
    Thus, worldwide use of these theories and models in 
numerical analysis based on finite element analysis and 
other similar techniques must realize their inherent 
restrictions and limitations. 
 
 
INCREMENTAL STRESS STRAIN THEORY OF 
ROSCOE AND POOROOSHASB 
 

An incremental stress strain theory was developed for 
normally consolidated clays by Roscoe and Poorooshasb 
(1963) for stress states on the state boundary surface. In this 
formulation the incremental axial strain associated with a 
given infinitesimally small stress increment in a drained test 
can be considered as the sum of two components that occur 
in (i) a constant volume or undrained deformation and (ii) a 
consolidation process in which the stress ratio remains 
constant. The relevant strain characteristics of the clay are 
therefore determined from the undrained and anisotropic 
consolidation tests alone and from these, the strains that 
occur in any type of partially or fully drained tests can be 
predicted. The validity of this formulation was thoroughly 
verified by Balasubramaniam (1969) and his subsequent 
student researchers at the Asian institute of Technology. 

Thus the classical contribution of Roscoe and 
Poorooshasb (1963) can be expressed as 
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where ( )drainedd 1ε  is the incremental axial strain in a 
drained test. Also, the first term on the right hand side 
represents the variation of axial strain increment 1εd  with 
the increment in stress ratio ηd  in a constant volume shear 
(undrained shear) while the second term corresponds to the 
variation of 1εd  with the volumetric strain increment vdε  
in a constant η  (anisotropic consolidation) stress path. Also, 

vdε is the incremental volumetric strain along the drained 
path and is the same as component from the anisotropic 
consolidation. This will be explained in the latter sections.  
In terms of shear strain Equation (1) can be expressed as  
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In Equation (2), the first term on the right hand side 

refers to the undrained component of the shear strain and 
the second term refers to the shear strain during the 
anisotropic component of the drained stress increment. 
Appendix 1 elaborates these aspects in detail.  

Equation (2) allows a variety of versatile tools which can 
be applied either in terms of total strains or in terms of 
plastic strains. The effect of prolonged time and creep in 
undrained or drained behaviour can be realised by studying 
the effect in each of the components ( )ηηε dd s / , 

( )vs dd εε /  and vdε . Similarly, the effect of cyclic loading 
and stress reversals.  

The original contribution of Roscoe and Poorooshasb 
(1963) restricted the validity of equation (2) to stress states 
on the state boundary surface. That is for normally 
consolidated clays. Also, the stress ratio must increase 
monotonically from any stress state to the critical state. 
However, latter work at the Asian Institute of technology 
by Kim (1991) and others (Balasubramaniam and Uddin 
1977; Kim et al. 1994) show that the Roscoe and 
Poorooshasb (1963) formulation can be extended to 
overconsolidated clays as well, when the stress states lie 
below the state boundary surface. 

Equation (2), when considered in terms of only plastic 
strains, with non-zero independent terms for ( )ηηε dd s /  

and ( ) vs ddd εηε / , indicates a strain hardening plastic 
behaviour with contributions of shear strains from two sets 
of yield loci. On the other hand when ( )ηηε dd s /  equals 

zero, then the plastic shear strains derived is obeys an 
associated flow rule of the type encountered in Cam Clay 
Model (Roscoe et al. 1963) and Modified Cam Clay model 
(Roscoe and Burland 1968).  

In this paper, it will be shown that the shear strain 
derived from Cam Clay Model and Modified Cam Clay 
model can be expressed in mathematical forms similar to 
Equation (2). Also, Modified Cam Clay model of Roscoe 
and Burland (1968) needs a set of constant q yield loci to 
contribute the term ( )ηηε dd s /  which is needed for the 

satisfactory prediction of the shear strains for non radial 
type of stress paths.  For the radial stress paths, the 
contribution from the volumetric yield loci as obtained 
using the energy balance concept, and the normality 
criterion are sufficient to predict the volumetric and shear 
strains. 
 
 
ALL THEORIES EXPRESSED IN SIMILAR 
MATHEMATICAL FORM FOR EASE OF 
COMPARISON 
 

Equation (2) of the Roscoe and Poorooshasb (1963) 
formulation can be expressed as  
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Volumetric strain contours (see Fig. 1) plotted by 

Balasubramaniam (1969) in the (q, p) plot for stress paths 
with monotonically increasing stress ratio revealed that the 
volumetric strain, vε , can be expressed as a function of the 
mean normal stress, p and the stress ratio η = q/p, thus  
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Equation (4) is the same as the state boundary surface 
expressed in (p,q ,e) plot, three dimensionally and then 

expressed as 
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Differentiating Equation (4), 
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Also, the experimental observation on undrained tests in 

normally consolidated clays (Roscoe and Poorooshasb, 
1963; Roscoe et al., 1963; Roscoe and Burland, 1968; 
Balasubramaniam and Chaudhry, 1978) reveal that the 
undrained shear strain can be expressed as a continuous and 
differentiable function of η . Thus 
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Figures 2 and 3 express such behaviour in relation to the 
contribution from the constant q yield loci as proposed by 
Roscoe and Burland (1968). Similar observations were 
noted on soft Bangkok clay by many researchers 
(Balasubramaniam and Uddin, 1977; Kim et al., 1994), and 
notably Kim (1991) who has investigated the stress strain 
behaviour both from the isotropic and anisotropic stress 
states with a variety of applied stress paths. 
 

The slope ( )ηεε sv dd / during anisotropic and isotropic 

consolidation is dependent on the stress ratio, η  (see Fig. 
4) and can be expressed as 
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Experimental evidence in support of Equation (7) for the 

formulation of ( )ηεε sv dd /  as a function of the stress ratio 

η  is presented in Roscoe and Poorooshasb (1963), Roscoe 
et al. (1963), Roscoe and Burland (1968) and 
Balasubramaniam (1969) on Kaolin and the subsequent 
work at the Asian Institute of technology on undisturbed 
samples of soft Bangkok clay. The energy balance 
equations developed at Cambridge and elsewhere, revealed 
that the plastic dilatancy ratio, that is, ( )p

s
p

v dd εε /  along the 
volumetric yield locus at any stress ratio is a function of the 
stress ratio, η . 
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Fig. 1 Constant volumetric strain contours in (p, q) plot (Balasubramaniam, 1969) 
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Fig. 2 Constant q yield loci 
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Fig. 3 Shear strain from constant q yield loci (virtually 
same as undrained shear strain) (Balasubramaniam, 1969) 
 
 

In order to obtain the plastic dilatancy ratio, p
s

p
v dd εε / , 

Cam Clay model used the energy balance equation: 
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M is the slope of the critical state line in (q, p) plot. 

From this equation, p
s
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v dd εε / can be derived as: 
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This plastic dilatancy ratio, when expressed in terms of 

total strains for isotropic and anisotropic consolidation 

paths give, 
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k  is the slope of the isotropic swelling line in (e, ln p) plot. 
Similarly, λ  is the slope of the isotropic consolidation line 
in the (e, ln p) plot. 
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Fig. 4 Observed and predicted dilatancy ratio 
(Balasubramaniam, 1969) 
 

For Modified Cam Clay Model of Roscoe and Burland, 
the energy balance equation is 
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This gives the plastic dilatancy ratio, p

s
p
v dd εε /  as 
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The dilatancy ratio in terms of total strains for radial 

stress path in Modified Cam Clay Model becomes 
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Equations (10) and (13) are strictly valid only for radial 

stress paths. For non-radial stress paths, sv dd εε /  depends 
both on the mean normal stress, p and the stress ratio, η.  
 
 
ELASTIC WALL CONCEPT AND VOLUMETRIC 
YIELD LOCUS 
 

Drucker et al. (1957) tried to associate the plastic strain 
rate vector to the Mohr Coulomb failure envelope, while 
the Cambridge researchers and Calladine (1963) used the 
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normality concept of Drucker (1959) for a stable material 
and obtained the relation. 
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Thus the following differential equation emerged for the 

volumetric yield locus: 
 
For Cam Clay Model 
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is the slope of the volumetric yield locus at any 

stress ratio, η in the (q, p) plot. 
 
For Modified Cam Clay Model 
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These equations were then integrated to obtain the 

volumetric yield locus and  then the state boundary surface. 
For Cam Clay Model the state boundary surface is given by 
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ep  is the mean equivalent pressure and is defined as 
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 (e0, p0) corresponds to the voids ratio and the mean normal 
stress at the pre-shear consolidation pressure and e, refers to 
the voids ratio at the current state after drained shear with 
mean equivalent pressure, ep . 
   For Modified Cam Clay model, the state boundary 
surface is given by 
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It can be seen that Equations (17) and (19) for the state 

boundary surface are functions of η  and p and are therefore 
in agreement with the formulation of Roscoe and 
Poorooshasb (1963) as given by Equation (3). In Equation 

(3), the volumetric strain vε  is used instead of the voids 
ratio, e or the mean equivalent pressure ep . 
 
 
VOLUMETRIC AND SHEAR STRAINS IN DRAINED 
TESTS 
 

The incremental expressions for the volumetric and shear 
strains in Cam Clay model and Modified Cam Clay model 
are given below. 
 

For Cam Clay model 
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For Modified Cam Clay model 

 

η
η

ηκλλε d
Mep

dp
e

d v 










+








+
−

+















+
=

22
2

11̀
 (22)  

 













+
+











−








+
−

= 2222
22

1 η

ηη

η

ηκλε
M

d
p

dp
Me

d s  (23)  

 
The incremental stress–strain relationships given by 

Equations (20) to (23) are only dependent on the 
fundamental soil constants M, λ, and κ. M is the slope of 
the critical state line in the (q, p) plot. λ is the slope of the 
isotropic and anisotropic consolidation lines in the (e, ln p) 
plots. κ is the slope of the isotropic swelling line in the (e, 
ln p) plot.  The values of M, λ, and κ are taken to be 0.9, 
0.26 and 0.06 respectively. 

Equation (3) of the Roscoe and Poorooshasb (1963) 
model can be expressed as  
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In a similar manner the expression for the shear strain in 
Cam Clay model as given by Equation (21) can be 
expressed as 
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For Modified Cam Clay model, the shear strain in Equation 
(23) can also be expressed as  
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Also,  
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For Cam Clay model and Modified Cam Clay model the 

expressions are written with superfix * and ** respectively 
and function ( )η1f  for undrained shear strain.  Then for 
Cam Clay model from Equations (21) and (25) 
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For Modified Cam Clay model from Equations (23) and 

(27) 
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Also for Cam Clay model from Equations (10) and (25) 
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For Modified Cam Clay model from Equations (13) and 

(27) 
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Further from Equations (20), (22), (26) and (28) 
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All the theories seem to be able to predict the volumetric 

strains correctly in the constant stress ratio paths   wherein 
the voids ratio-log mean normal stress relation is linear (see 
Fig. 5). 

Further for Cam Clay model, from Equations (20) and 
(26) 
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and for Modified Cam Clay model, from Equations (22) 
and (28) 
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Fig. 5 Voids ratio-mean normal stress relation during 
isotropic and anisotropic consolidation (typical case for 
η =0.4) (Balasubramaniam 1969) 
 

Experimental observations provided in Fig. 6, confirm 
that Modified Cam Clay model makes better prediction of 
the volumetric strain in constant p tests and as such 
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For Cam Clay model and Modified Cam Clay model the 

following similar expressions can be arrived as 
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Equation (16) can be rearranged to give 
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It thus appears, for Cam Clay model and Modified Cam 

Clay model the energy dissipating function when combined 
with the normality rule becomes the single most factor that 
controls the shape of the predicted state boundary surface, 
the volumetric strain in drained behaviour, the pore 
pressure development in undrained behaviour for all types 
of stress paths and in the case of shear strain, the prediction 
is only limited to radial stress paths. 

Experimental evidence is provided (see Figures 4 and 6) 
to illustrate that Modified Cam Clay model can successfully 
predict the volumetric strains and the dilatancy ratio 

( ) ( )( )ηεε η 2/ fdd sv = . Cam Clay model was found to over 

predict the volumetric strain in drained test and hence the 
shear strain as well.  

However, when it comes to the prediction of the shear 
strain, Modified Cam Clay model with a single set of 
volumetric yield loci satisfying the normality concept of 
Drucker (1959), is deficient in the prediction and an 
additional set of constant q yield loci based on the deviator 
stress are needed (see Fig.s 2 and 3). 

Also it appears from experimental observations (see 
Figures 7 and 8) that 
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Thus, Modified Cam Clay model lacks the undrained 

component of shear strain ( ( ) ηηφ d ) as used in Equation 
(6). This is why the second set of constant q yield loci was  
used by Roscoe and Burland so that in the revised version 
of  Modified Cam Clay model the shear strain needs to be 
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Fig. 6 Volumetric strains in constant p tests (Balasubramaniam, 1969) 
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Fig. 7 Various components of shear strain (undrained, anisotropic and drained) (Balasubramaniam, 1969) 
 



The application of normality rule and energy balance equations for normally consolidated clays 

obtained in two parts one from the constant q yield loci and 
the other from the volumetric yield loci as 
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The energy dissipation in the use of the constant q yield 

loci don’t seem to be accounted for in the energy balance 
equation used to obtain the plastic dilatancy ratio which 
governs the shape of the volumetric yield loci through the 
normality rule and which can only make contributions for 
radial type of stress paths. 

Experimental evidence is provided (see Figures 4 and 6) 
to illustrate that Modified Cam Clay model can successfully 
predict the volumetric strains and the dilatancy ratio 
( ) ( )( )ηεε η 2/ fdd sv = . Cam Clay model was found to over 

predict the volumetric strain in drained test and hence the 
shear strain as well.  

However, when it comes to the prediction of the shear 
strain, Modified Cam Clay model with a single set of 
volumetric yield loci satisfying the normality concept of 
Drucker (1959), is deficient in the prediction and an 
additional set of constant q yield loci based on the deviator 
stress are needed (see Figures 2 and 3). 
 

Also it appears from experimental observations (see 
Figures 7 and 8) that 
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Thus, Modified Cam Clay model lacks the undrained 

component of shear strain ( ( ) ηηφ d ) as used in Equation 
(6). This is why the second set of constant q yield loci was  
used by Roscoe and Burland so that in the revised version 

of  Modified Cam Clay model the shear strain needs to be 
obtained in two parts one from the constant q yield loci and 
the other from the volumetric yield loci as 
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The energy dissipation in the use of the constant q yield 

loci don’t seem to be accounted for in the energy balance 
equation used to obtain the plastic dilatancy ratio which 
governs the shape of the volumetric yield loci through the 
normality rule and which can only make contributions for 
radial type of stress paths. 
 
 
CONCLUDING REMARKS 
 

The classical theories of Roscoe and Poorooshasb (1963), 
and Cam Clay model (Roscoe et al., 1963), and Modified 
Cam Clay model (Roscoe and Burland, 1968) are expressed 
in similar mathematical forms to understand the 
implications of the use of energy balance equations and the 
normality rule. All the theories seem to be able to predict 
the volumetric strains correct in the constant stress ratio 
paths wherein the voids ratio log mean normal stress 
relation is linear. It appears for Cam Clay model of Roscoe 
et al. (1963) and Modified Cam Clay model of Roscoe and 
Burland (1968), the energy dissipating function when 
combined with the normality rule becomes the single most 
factor that controls the shape of the predicted state 
boundary surface, the volumetric strain in drained 
behaviour, the pore pressure development in undrained 
behaviour for all types of stress paths while in the case of 
shear strain, the prediction is only limited to radial stress 
paths. 

0 2 4 6 8 10
Shear Strain, εs, %

0

0.2

0.4

0.6

0.8

S
tre

ss
 R

at
io

, q
/p

Revised Theory of Roscoe and Burland (1968)

 
 

Fig. 8 Predicted shear strain by Roscoe and Burland (1968) after using contribution  
from constant q yield loci (Balasubramaniam, 1969) 
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APPENDIX A. SYMBOLS AND DEFINITIONS 
 

ee ,0  initial and current voids ratio 

21,, ffF  functions defined with 
respect to Roscoe and 
Poorooshasb (1963) theory 

*
2

*
1

* ,, ffF  functions defined with 
respect to Roscoe et al. 
(1963) theory 

**
2

**
1

** ,, ffF  functions defined with 
respect to Roscoe and 
Burland (1968) theory 

k slope of isotropic swelling 
line in (e, ln p) plot 

LL ,0  initial and current height of 
sample in triaxial test 

M slope of critical state line 

p mean normal stress 

0p  isotropic consolidation stress 

ep  mean equivalent pressure = 







 −

λ
eep 0

0 exp  

q deviator stress 

vε  volumetric strain 

VV ,0  initial and current volume of 
sample 

321 ,, σσσ ′′′  principal effective 
compressive stresses 

321 ,, εεε  principal compressive strains 

vε  volumetric strain 

sε  shear strain 

λ  slope of isotropic 
consolidation line in (e, ln p) 
plot 

η  stress ratio = q/p 

)(ηφ  function associated with the 



The application of normality rule and energy balance equations for normally consolidated clays 

shear strain from constant q 
yield loci 
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( )drainedd 1ε  is the incremental axial strain 
in the drained stress path 

( )undrainedd 1ε  is the incremental axial strain 
in the undrained stress path 

vd
d









η
ε1  

is the slope of the axial 
strain-stress ratio, η 
relationship during undrained 
shear with constant volume, 
v. 

ηε
ε



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
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

vd
d 1  

 is the slope of the axial 
strain – volumetric strain 
relation during anisotropic 
and isotropic consolidation 
with constant stress ratio, η. 
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is the slope of the shear 
strain- stress ratio, η 
relationship during undrained 
shear with constant volume, 
v. 
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is the slope of the shear strain 
– volumetric strain relation 
during anisotropic and 
isotropic consolidation with 
constant stress ratio, η. 
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is the gradient of the 
volumetric yield locus at any 
point in the (q, p) plot with 
stress ratio, η 

 
APPENDIX B. DETERMINATION OF VOLUMETRIC 
AND SHEAR STRAIN 
 

The procedure adopted for calculating the volumetric 
strain along any applied stress path is as follows. Let AB in    
Figure B1 be the applied stress path for which the 
volumetric strain stress ratio relationship is being 

determined.  Then the undrained stress path AC through the 
point A is drawn. The path AB is divided into a large 
number of small steps AB1, B1B2, B2B3, …BnB. Then each 
step AB1 is considered in two parts; AC1, along an 
undrained stress path and C1B1 along an anisotropic 
consolidation path. The volumetric strain experienced by 
the specimen at states, B1, B2, ....Bn and B are denoted by 
( ) ( ) ( ) nBvBvBv εεε ,...,

21
and ( )Bvε  respectively. Similar 

notation is used for the shear strain as well as 
( ) ( ) ( ) ( )BsBsBsBs and

n
εεεε ,...,

21
. The incremental strains 

for the steps AB1, B1B2, ...BnB will then be in the case of 
the volumetric strains as ( ) ( ) ( ) BBvBBvABv n

ddd εεε ,...,
211

. 

Also the incremental shear strains are 
( ) ( ) ( ) BBsBBsBAs n

ddd εεε ,...,
2111

. The notations for the 

shear strains along the undrained stress path AC for the 
states C1, C2, ....Cn are  ( ) ( ) ( )

nCsCsCs εεε ,...,
21

, and for the 

incremental shear strains for the steps AC1, C1C2, .... CnC 
are ( ) ( ) ( ) CCsCCsACs n

ddd εεε ,...,
211

. 

   As stated before, since an undrained stress path is a zero 
volumetric strain contour, it can be shown that: 
 

( ) ( )
111 BCvABv dd εε =  (B1) 

 

 

 
 
Fig. B1 Incremental steps in the calculation of volumetric 
and shear strains in drained tests 
 
 
 



 
Balasubramaniam et al. 

Let (e0, p0 ) be the voids ratio and the mean normal stress 
at point A on the isotropic consolidation line in Fig. B1. 
Then the isotropic consolidation can be expressed as 
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If  ( ) ( )

21
, CC pp  denote the mean normal stress for states 

C1 and B1 and if ( )
1Be  is the void ratio corresponding to the 

state B1, then: 
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Also, 
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Hence, knowing ( )

1
,,0 Cpe λ and ( ) ( )

11
, BB ep  can be 

calculated, and therefore, ( )
1B

ε , ( )
11BCvdε and 

( )
1ABvdε can be determined. Similarly considering the state 

points C2  and B2: 
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and 
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From Equations (B4) and (B6), the following can be 

derived. 
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The same procedure can be repeated to 
determine ( )

3Bvε , ( ) ( )
nBvBv εε ...

4
 and 

( ) ( ) ( ) BBvBBvBBv n
ddd εεε ....,

4332
. Hence, the volumetric 

strain-stress ratio relationship can be established. 
 

The undrained shear strain can be obtained from the 
( )ηε ,s  relationship, which can also be expressed as 
 

( ) ηηε
η

dfundraineds )(
0

1∫=  (B9) 

 
Thus, the shear strain ( ) ( ) ( )

nCsCsCs εεε .........,
21

 for 

stress ratio, nηηη ,....., 21  can be obtained for points 

nCCC ,........., 21 .  
In the previous sections, the dilatancy ratio is given and 

can be expressed as 
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Hence, the shear strain in the drained path can be 

computed for various values of η  using the relation 
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and 
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Thus, 
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In Equation (B13) when i = 1, B0 coincides with A. 
 

 


