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TIME-DEPENDENT ELASTOPLASTIC CONSTITUTIVE EQUATION OF SOILS
AND ITS APPLICATION TO FEM IMPLEMENTATION

T. Okayasu' and K. Hashiguchi®

ABSTRACT: The fime-dependent subloading surface model (Hashiguchi and Okayasu 2000)
would predict time-dependent elastoplastic deformation of materials pertinently. In this article
the equation of the creep stretching formulated in the previous article for soils is extended so
as to predict the time-dependent deformation of soils more accurately. Its adequacy is
evaluated by comparisons with test data under undrained triaxial compression. Further, the
finite element method (FEM) program for the prediction of time-dependent elastoplastic
deformation behavior of soil structures is developed based on the time-dependent subloading
surface model, the soil-water coupled formulation and the finite deformation theory. The
ability of the FEM program is examined for the simulation of one-dimensional consolidation
phenomenon.

INTRODUCTION

In clayey soft grounds, irreversible large deformation is caused by construction of soil
structures such as embankments, tunnels, excavations and so on. Further, the deformation that
is called the secondary consolidation or the secondary consolidation effect is continuously
observed for very long term after the completion of construction.

Various constitutive models for describing time-dependent behavior of soils have been
proposed up to the present. They could be classified into three kinds of approaches, i.e. the
over-stress model (Adachi and Okano 1974; Adachi and Oka 1982; Liang and Ma 1992)
originated by Perzyna (1963a, b, 1966), the nonstationary flow surface model (Sekiguchi
1977, 1984; Sekiguchi and Ohta 1977; Nova 1982; Matsui and Abe 1985) originated by
Olzak and Perzyna (1966, 1970) and the superposition model (Dafalias 1982; Kaliakin and
Dafalias 1990a, b; Tian et al. 1994; Al-Shamrani and Sture 1998). However, these models
could not be applicable to the description of deformation behavior for a wide range of stress
below and over the elastic limit as was analyzed by Hashiguchi and Okayasu (2000) in detail.

Plastic deformation due to the mutual slip between microstructures is suppressed under a
high-rate deformation causing the increase of viscous resistance acting between
microstructures of the materials, e.g. crystals or polycrystals for metals and soil particles for
soils. Therefore, when a large deformation is induced at a high rate, the stress would go out
the yield surface since the deformation proceeds elastically, whilst the plastic deformation is
suppressed by the viscous resistance and thus the yield surface is almost fixed. The
subloading surface model (Hashiguchi and Ueno 1977; Hashiguchi 1980, 1989; Hashiguchi
and Chen 1998) does not premise that the stress exists on the normal-yield surface
(conventional yield surface) even in the plastic loading process. In this model the subloading
surface 1s introduced, which passes always through the stress point even when the stress
exists inside the normal-yield surface and is similar to the normal-yield surface, and it is
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assumed that the subloading surface approaches to the normal-yield surface in the plastic
loading process. Hashiguchi and Okayasu (2000) extended this model so as to describe the
time-dependent deformation behavior by allowing the subloading surface to become larger
than the normal-yield surface and introducing the creep stretching which proceeds with time
and further proposed the constitutive equation for soils by incorporating the secondary-
consolidation phenomenon. Its adequacy has been also verified by comparing it with
experimental data on fundamental time-dependent behavior under undrained condition.

In this article the creep stretching of the model is extended so as to predict the time-
dependent deformation of soils more accurately. The adequacy is evaluated by comparisons
with test data under the undrained triaxial compression. Further, the finite element method
(FEM) program for the prediction of the time-dependent elastoplastic deformation behavior of
soil structures is developed based on the time-dependent subloading surface model, the soil-
water coupled formulation (Akai and Tamura 1978) and the finite deformation theory
(Yatomi et al 1989). The capability of the FEM program is examined for the simulation of
one-dimensional consolidation phenomenon.

The signs of a stress (rate) and a stretching (a symmetric part of velocity gradient)
components are taken to be positive for tension, and the stress for soils is meant to be the
effective stress, 1. e. the stress excluded a pore pressure from the total stress throughout this
article.

THE TIME-DEPENDENT SUBLOADING SURFACE MODEL

In this section the outline of the time-dependent subloading surface model is explained
since it is essential for development of the FEM program.
Let it be assumed that the stretching D is additively decomposed into the elastic stretching

D¢ due to deformation of solid particles and the inelastic stretching D¢, called the plastic-
creep stretching, due to mutual slip between solid particles:

D =D°+D** )
where the elastic stretching D is given by
D‘=E'f )

$ is a stress, (°) indicates the proper corotational rate with the objectivity (cf e.g.

Dafalias 1985; Zbib and Aifantis 1988) and the fourth-order tensor E is the elastic modulus
given in the Hooke's type as

Eyy = (K =2G)8,6, +G(6,8;, +6,8; ) 3)

where K and G are the bulk and the shear modulus, respectively, which are functions of stress
and internal state variables in general and &;; is the Kronecker's delta, i.e. 6;= 1 for i = j and
6;=0fori # J.

Let it be assumed that the plastic-creep stretching D?¢ is further additively decomposed

into the plastic stretching D? induced by the stress rate and the creep stretching D° always
induced by the elapse of time without a loading criterion, i.e.
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D’=D" + D¢ 4)
Normal-Yield and Subloading Surfaces

Assume the yield condition:
f@®)=F(H) (5)

where the scalar H is the isotropic hardening/softening variable. Let it be assumed that the
function 7'is homogeneous of degree one in the stress tensor § . Then, the yield surface keeps
a similar shape. Hereinafter, let the elastoplastic constitutive equation be formulated in the
framework of the unconventional plasticity defined by DRUCKER (1988) as the extended
plasticity such that the interior of yield surface is not a purely elastic domain but plastic
deformation is induced by the rate of stress inside the yield surface. Thus, the conventional
yield surface is renamed as the normal-yield surface in the present model.

Now, let the subloading surface (Hashiguchi and Ueno 1977; Hashiguchi 1980, 1989) be
introduced, which always passes through the current stress § and keeps the similarity to the
normal-yield surface with respect to the origin of stress space, i.e. § =0. Besides, the ratio of
the size of the subloading surface to that of the normal-yield surface is denoted by R which
can be regarded also as the measure of approaching degree to the normal-yield state and thus
is called the normal-yield ratio. The conjugate stress § , on the normal-yield surface for the

current stress § on the subloading surface due to the similarity is given by

$,= (6)

===

By substituting Eq. (6) into Eq. (5) with regarding § in Eq. (5) as § ,, the subloading
surface is described as

f(3)= RF(H) (M

The normal-yield and the subloading surfaces are depicted in Fig. 1.
The time-differentiation of Eq. (7) for the subloading surface is given by

tr(afT@f) =RF + RF'H (®)
where
,_ dF
Fr=dt ©)

tr( ) denotes the trace and (*) stands for the material-time derivative. Further, it can be

interpreted that the internal structure of materials changes not only with the plastic stretching
but also with the creep stretching. Then, taking account of the plastic-creep stretching
decomposition defined in Eq. (4) and the fact that the mutual slip of solid particles and the
alteration of slip-characteristics is caused by the creep stretching as well as the plastic
stretching, let it be assumed that an internal variable is additively decomposed into the plastic
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and the creep part. Hence, the evolution rule of the isotropic hardening/softening variable H is
extended as

H=0"+H¢ (10)

where H” and H¢ are the same functions fy of D and D, respectively, in homogenous
degree one as follows:

A"~ f,@ . D). H° = f,§, D) (in

Let the evolution equation of the normal-yield ratio R be given by
R=U"|D?| for D* # 0 (12)

where U'is the function of R and D
with HDH satisfying

, which monotonically decreases with R and increases

U'=U, for|D|=0,
(13)
U'>U, for|D|>0,

and thus it results that R >0 evenin R=1 if |D|| >0. The function U ! is illustrated in Fig. 2.

The concrete form of the function U’ is given additively as

U' = Ur(R)+Us(|D]) (14)

Ut
Normal-yield surface

0,(=6/R)

o Subloading surface

0 oy
0 ~
1~ R

Figz 1  Normal-yield and subloading  Fig. 2 Function U in the evolution rule of

surfaces Plastic Stretching the normal-yield ratio R
where U, (=0) is the monotonically increasing function of HD , satisfying
U,=0 for|D||=0 (15)

The simplest function U, satisfying Eq. (15) is given by
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U, =¢[o] (16)

where ¢ is the material constant.

In this extended model the normal-yield ratio R is regarded as a measure describing the
degree that a stress approaches to the normal-yield surface or goes out it, whilst the stress
goes out the normal-yield surface, resulting in R > 1, at a high rate of deformation.

The consistency condition extended for time-dependent deformation is given from Eq. (8)
with Egs. (10) and (12) as

tr(afTG)S’)=UtHDPHF+RF'(P.Ip+ﬁIC) (17)
Assume the associated flow rule for the subloading surface

D’ =AN (N_ @) /H @) H) (1)

where A (>0) is the proportionality factor and the second-order tensor N is the normalized
outward-normal of the subloading surface.
The substitution of Eq. (18) into the extended consistency condition (17) leads to

tr(N§) — H tr(N§)

4 = 19
; (19)
where
t_(F' Ut
M —(F 0 L U
p_(Fh + R)tr(NS) (20)
o _H"
W=t 1)

It should be noted that the plastic modulus A7/ becomes larger and thus the magnitude of
plastic stretching becomes smaller at a higher rate of deformation since As! is the
monotonically increasing function of the magnitude of stretching |D| through the extended

function U’ in Eq. (14).
Noting that the internal variable describing the alteration of the creep deformation would
be also influenced by the plastic deformation as well as the creep deformation, let the creep

stretching D be given as

D°'=T1($.H) (22)

where T is the second-order tensor function of the stress § and the internal state variable H
in general.
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It holds from Eqs. (1), (2), (4), (8), (18), (19) and (22) that

tr(N&f)—%ﬁz“tr(Ns )
M;

D=E'§ + N+T (23)

The positive proportionality factor A, rewritten as A, is described in terms of the stretching
D fromEq. (23) as

| {r(NED) —%ﬁ“tr(NS) —{r(NET)

M} +1r(NEN) @

The stress rate is given from Eqs. (1), (2), (4), (8), (18), (19), (22) and (24) as

tr(NED)—%’ﬁI“tr(Ns ) —tr(NET)
§ =ED- EN —ET (25)
M! +tr(NEN)

Note that the stretching D cannot be expressed analytically in terms of the stress rate §

since the right-hand side of Eq. (23) includes D but inversely the stress rate § is expressed
analytically in terms of the stretching D as seen in Eq. (25). Besides, the constitutive equation
(23) or (25) is of the so-called rate-nonlinearity since it includes the magnitude of stretching

|D||. The rate-nonlinearly is the inevitable property of rate-type constitutive equations for

describing the time-dependent behavior since the stiffness modulus relating the stress rate to
the stretching has to depend on the rate variable, i.e. the stretching or the stress rate.

A loading criterion would not be necessary for the creep stretching since it proceeds
always with the elapse of time. On the other hand, taking the fact that A has to be positive, let
the following loading criterion for the plastic stretching be assumed:

D” £0: A > 0
: > 26
DPZO:ASO} (26)

It should be noted that the constitutive equation formulated in the foregoing reduces to the
time-independent subloading surface model when |D|| —0 and D“=0. Here, note that time-
independent elastoplastic deformation would hold approximately in the moderate rate of

deformation for which the function Up in the plastic modulus and the creep stretching are
negligible.

Material Functions for Soils

First, let the material functions in the subloading surface model formulated in the
preceding section be given for soils, whilst the ones involved in the time-independent model
are given in the previous articles (Hashiguchi 1994; Hashiguchi and Chen 1998).

Let the stress function /(8 ) in the subloading surface (7) be given for soils as
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f@)=pl+x") (27)
where
pE—%trS, $«=§ +p1 (28)
= =8+
I=Q-p. Q= I (29)
X sw (30)
2/6sin¢

m= 3—sin¢sin30, (1)

. trll 3
sin30, =—/6 np (32)

where I is the identity tensor and ¢ is the material constant. The tensor B describes the

inherent anisotropy by letting the normal-yield and the subloading surfaces rotate around the
origin of stress space (Sekiguchi and Ohta 1977), whilst the induced anisotropy could be
described by formulating the evolution rule of B (cf. Hashiguchi 1994; Hashiguchi and Chen

1998). For B =0 (isotropy) the meridian section of the normal-yield and the subloading
surfaces for 6,, = const. are half-ellipsoids whose long axes coincide with the hydrostatic axis
in the stress space. The equation y = 1. i.e. [I|=m with B =0 and Eq. (31) coincides with
the Coulomb-Mohr failure criterion in the axisymmetric stress state, 1i.e.
I8 *| /p =26 sing/(3*sing) (+: extension (8,,= —n/6), — compression (6, = n/6)). The
normal-yield and the subloading surfaces described by Eqs. (5), (7) and (27) are illustrated in
Fig. 3 for the axisymmetric stress state in the (p, g) plane, where

q:‘sa _Sl (33)

where § , and § ; denoting the axial and the lateral stress, respectively, and S, being the axial
component of B .
The isotropic hardening/softening function is given as

I'=1I exp(%) (34)

where Fj is the initial value of . p and y are the slopes of normal-consolidation curve and the
swelling curve, respectively, in the space (In p, In v) (p: pressure, v: volume). The evolution
rule of the isotropic hardening/softening variable H is given as

H? =-D? =—t1D?, H® =-D =—t1D° (35)
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Fig. 3 Normal-yield and subloading surfaces of soils in the (p, ¢) plane illustrated for the
state of stress over the normal-yield surface R>1 under the axisymmetric stress state

The elastic bulk modulus K in Eq. (3) is given as

p
K:_
Y

(36)

Equations. (34) and (36) are obtained from the In v-In p linear relation (Hashiguchi 1974),
whilst the V-In p linear relation (V' (= 1+e, e: void ratio): specific volume) adopted widely in
constitutive equations of soils has physically unacceptable characteristics, as has been
reviewed in detail by Hashiguchi (1995):

1) The specific volume ¥ is predicted to be negative in high pressure p. This defect was
indicated first by Butterfield (1979).

ii)) The elastic bulk modulus becomes the larger value at the looser state.

iii)) The elastic bulk modulus depends on the initial volume V5, although the properties of
the real material are to be independent of the initial state.

1v) The application has to be limited to the description of infinitesimal deformation.

The elastic shear modulus G is given by G = (3/2)K(1 — 2 v)/(1 + v) with the elastic bulk
modulus K in Eq. (36) and the Poisson’s ratio v as the material constant, whilst the pertinent
elastic constitutive equation of soils is proposed recently by Hashiguchi and Collins (2001).

Hashiguchi and Okayasu (2000) formulated the following equation for the creep stretching
so as to describe not only the secondary consolidation effect but also the creep relaxation
effect with respect to deviatoric stress state based on the empirical observations (cf. e.g.
Murayama et al. 1970; Lacerda and Houston 1973), i.e.

_ L N¢
1=0¢ = poespi = +s(r-20)} T (37)

Let Eq. (37) be extended by considering the fact that the creep effect is suppressed at near
the isotropic stress state and is induced remarkably with the increase of y as follows:

1=piexp{=H +&(rR-1)+&,1} txc (38)

where N¢ is the normalized outward-normal of the creep potential surface, i.e.
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c_of®) 71ar°@$) 39
w5 e »
fC@)=p' A +x (40)

xe EU (41)
mcz—eXp{iggc _1)}m (42)

£, &1, &, a and b are material constants. The meridian section of the creep potential surface for
0,= const. 1s the ellipsoid passing through the origin of stress space and the current stress

point. The variation of the creep potential surface with the values of ¥ and R is illustrated in
Fig. 4.
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Fig. 5 Undrained triaxial compression with various
strain rates (test data after Adachi et al. 1985)
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Fig. 6 Undrained triaxial creep-rupture at various
deviatoric stress levels (test data after
Murayama et al. 1970)

Mechanical Responses under Undrained Triaxial Compression

The mechanical responses of the model are examined for the several series of test data for
clays under undrained triaxial compression in this section.

First, the comparison of the present model with Adachi et al's (1985) test data on
undisturbed samples of Osaka alluvial clay subjected to the various strain rates is shown in
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Fig. 5. The material constants and the initial values are selected as follows:
$=36.0°, p=0.149, y =0.046, v=0.3, u=10.0,
Iy =294.0kPa, § o =—294.0IkPa;
£ =250.0 min, @ =0.005, & =8.0, £&,=3.3, a=0.6, h=0.1
) = —0.000008 min
where §  is the initial value of § . The unrealistically large isotropic creep relaxation at the
low stress ratio in the p-g space is predicted by Eq. (37). On the other hand, it is suppressed
realistically by the proposed creep stretching equation (38).

Figure 6 shows the comparison of the present model with Murayama er al.’s (1970) test

data on undisturbed samples of Umeda clay subjected to the creep rupture under various
values of ¢ in which the relationships of the axial strain rate £, versus the time ¢ elapsed after

the stress was kept constant are shown. The material constants and the initial values are
selected as follows:

¢ =36.0°, p=0.149, ¥ =0.046, v=0.3, u=10.0,
Fy=294.0kPa, $ ¢ =—294.01kPa;
£ =100.0 min, o =0.003, &, =8.0, £&,=12.0, a=04, b=0.1
¢, = —0.000005 min "

Fairly good prediction is observed for the relationship between loge, and logs. The

>

unrealistically large isotropic creep relaxation at the low stress ratio in the p-g space is
predicted by the creep stretching equation (37). The defect is obviously improved by the creep

stretching given in Eq. (38).
FINITE ELEMENT ANALY SIS
Rate Expression of Virtual Work Principle
The rate expression of virtual work principle based on the finite deformation theory with

the updated-Lagrangian scheme (e.g. Yatomi et al. 1989; Asaoka et al. 1994, 1995 and 1997)
is given by

jv[s SD+{(trD)§ —SL"}2) L]dv— Lﬁw(tr5D)dv

(43)
—I P, (trD)b «5vdv = I e 5 vds
with the nominal traction force rate in the current configuration as
®=t+(trD-n-Dn)t (44)

where n is the unit outward-normal to the boundary surface. P,, is unit mass of water. b is the
body force per unit mass. The letters v and s denote the volume and the area of the body in the

current configuration, respectively. 5( ) stands for the virtual increment. t =§ n is the traction
force of the total Cauchy stress, which is obtained by
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¥ =% -p1 (45)

DPw 18 the pore-water pressure (compression is a positive).
The Zaremba-Jaumann rate is used for the corotational rate of the effective stress § :

§=C-ws S w (46)
where W is the continuum spin (screw-symmetric part of velocity gradient).
Continuity Condition of Soil-Water System

For solving the additional field variable p,, in Eq. (43) the following equation should be
introduced simultaneously:

(L dv). = L trDdv = —L vends 7

where v is the discharge velocity of pore water. Eq. (47) is expanded based on the Darcy’s
law into the form:

kah S ( (48)

where k is the coefficient of permeability. h, z and Y are the total head, the elevation
head and the unit weight of water, respectively.

Soil-Water Coupled Stiffness Equation

The elastoplastic constitutive relation (25) is decomposed into the parts due to the
stretching term and the creep term, i.e.

F/ LIPS
S-H tr(N¥ ) + tr(NE7)
y—p{1-_NONE__4p, I EN-Et (49)
M}, +tr(NEN) M, +tr(NEN)

The global stiffness equation for the soil-water system is given from Eqs. (43)-(49) as
follows:

[—gv_@Baz]{pwm} {W W} {(1 ng)ozvptwt}_{a(ez”ptg(l—e)zt)}

where the stiffness matrix [K] in Eq. (50) involves the first term in Eq. (49) and then Af] is

assembled by the virtual force increment due to the second and third terms in Eq. (49). Af” is
the nodal force increment. [Bv] and [ ¢ | are the transformation matrix of the nodal
displacement increment to the volumetric strain increment and the stiffness matrix of the pore
water. # and A indicate time and time increment. The FEM program is developed based on
the soil-water coupled formulation of Akai and Tamura (1978), the finite deformation theory
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of Yatomi et al. (1989) and their unification of Asaoka et al. (1994, 1995 and 1997).

In addition, the stiffness equation (50) is rate-nonlinear since the plastic stretching includes
the magnitude of stretching, i.e. |[D| and further the elevation head depends upon the change
of soil skeleton. Therefore, Eq. (50) has to be solved by the iterative calculation under the
boundary conditions in general.

ONE-DIMENSIONAL CONSOLIDATION

The performance of the present FEM program is evaluated by the simulation of the one-
dimensional consolidation phenomena.

Influence of Stress Rate

The stress controlled consolidation phenomena for various stress rates (high: 1 X 107,
middle: 1X10™ low: 1 X107 kPa/min) are compared, which are simulated by the FEM
program based on the time-independent and the time-dependent subloading surface models.
The specimen is descretized into 42 nodes and 20 elements using the 4-nodes isoparametric
quadrilateral element as shown in Fig. 7. The bottom and both side-boundaries of the
specimen are given by the impermeable boundaries whilst the top of the specimen is the
permeable boundary. The vertical stress is continuously increased up to —100 kPa. The
specimen is left during one year in order to observe the aging effect under the constant
vertical stress condition and then the vertical stress is increased continuously. The material
constants and the initial values are selected as follows:

¢ =30.0°, p=0.08, 7 =001, v=0.3, ©=100.0,
F,=100.0kPa,$ , =—10.0IkPa;
¢ =200.0 min, o =0.003, £,=5.0, £&,=5.0, a=0.1, b=0.1,
< = —0.00008 min';

k=6>10" m/min, 7, =9.8 kN/m’.
Here, note that the time-dependent constitutive equation is reduced to the time-independent
(elastoplastic) one if the material constant & and the initial value Dy, are taken to be zero. The

third term in Eq. (43) and the elevation head z are not considered thought the simulations
since the specimen is small.

The vertical stress-volumetric strain curves and the elapsed time-volumetric strain curves
at the constant stress state for the various stress rates are shown in Fig. 8. In the result of the
high rate loading simulated by the FEM program with the time-independent subloading
surface model the volumetric compression due to the pore water pressure dissipation is
observed at the constant stress state as shown in the left of Fig. 8b. On the other hand, the
volumetric compression is not observed at constant stress state since the pore water pressure
dose not grow under the middle and low rate loading conditions. Further, the coupled
consolidation due to the pore water dissipation and the creep effect, called the delayed
consolidation by Bjerrum (1967), is predicted at the high rate loading by the FEM program
with the time-dependent subloading surface model as shown in the right of Fig. 8b. The
purely delayed consolidation is described in the middle and low rate loadings. The relation of
normal-yield ratio versus vertical stress in the reference element for the middle rate loading is
illustrated in Fig. 9. The creep deformation is predicted not only in the normal-yield but also
in the sub-yield states whilst it cannot be predicted by the FEM program based on the models
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assuming the purely elastic domain inside the yield surface, e.g. the over-stress model and the
non-stationary flow surface model.

Time-independent model Time-dependent model
Vertical stress o, (kPa) Vertical stress o, (kPa)
O101 102 10® 10! 10? 103

Stress input

}Aging (1 year)

g
o
=
g
] I 2
E
@
Permeable S
(a) logoy vs. g,
g Elapsed time ¢ (min) Elapsed time ¢/ (min)
| = =~ R (0 102 10° 10° 10° 102 10* 106
(=3 X ¥
S Impermeable E ~® ® N
=
/ g 1k o) B @
@
2
22t L
Q
Y B ®
[z § 3 1 year —»i 1 year -

(b) logt vs. &, at constant stress state

Fig. 7 FE mesh and boundary
conditions for
one-dimensional
consolidation test

Fig. 8 Comparison of consolidation curves for various
stress rates calculated by FEM program with
time-independent and time-dependent
subloading surface models

Influence of Specimen Thickness

The influence of the specimen thickness is examined on the elapsed time-volumetric strain
relation. The specimen thickness is selected as 10 (22 nodes, 10 elements), 20 (42 nodes, 20
elements) and 60 (122 nodes, 60 elements) mm. In all simulations the vertical stress —100 kPa
is applied to the top of the specimen instantaneously realizing the perfectly undrained
condition and then the specimen is left during 1< 10° min (about 70 days) under the partially
drained condition.

The variations of the volumetric strain-elapsed time relations for three sizes of the
specimen thickness are depicted in Fig. 10, which are calculated by the FEM program with
the time-independent and the time-dependent subloading surface models. All consolidation
curves analyzed by the FEM program with the time-independent subloading surface model
coincide with each other after the pore water pressure is dissipated. Thus, the secondary
consolidation cannot be observed without the consideration of the time-dependency of
material itself. On the other hand, the secondary consolidation is described realistically by the
FEM program with the time-dependent subloading surface model. Further, the volumetric
strains do not coincide even when the pore water pressure is dissipated since the quantity of
the consolidation induced by the creep effect increases with time. Often the consolidation
phenomenon is interpreted separating into the primary (pore water pressure dissipation) and
secondary (creep effect) consolidation but it should be considered as their coupled
phenomenon in general. The FEM program with the time-dependent subloading surface
model could predict the consolidation behavior pertinently.
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CONCLUDING REMARKS

In this article, the creep stretching proposed by Hashiguchi and Okayasu (2000) is
extended so as to suppress the isotropic stress relaxation at the low stress ratio and inversely
induce a more remarkable relaxation at the high stress ratio. The FEM program based on the
time-dependent subloading surface model is developed in order to analyze the boundary value
problem with the time-dependent deformation behavior of soil structures. The FEM program
was verified to describe pertinently the consolidation behavior due to not only the pore water
pressure dissipation but also the creep in the one-dimensional consolidation.
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