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OPTIMAL DESIGN OF GEOTECHNICAL STRUCTURES
FOR LOWLAND AREAS

S. Valliappan', A. Hakam” and V. Tandjiria3

ABSTRACT: The applications of optimization technique for raft foundations built on soft
soils and retaining walls are presented in this paper. The objective function of the
optimization problem is the cost of the structures (which is a function of thickness,
dimensions and material of stabilized soil). The constraints are the displacement, differential
displacement and stabilities. The finite difference sensitivity analysis and the combination of
extended bi-point constraint and Lagrangian constraint approximation are carried out during
the structural optimization process. The finite element method has been used to analyse the
response of the structures. The results of the numerical examples show that the structures can
be designed both economically and effectively using the proposed method.

INTRODUCTION

Optimization methods have been developed rapidly over the last thirty years. However,
their application to geotechnical structures is still rare. In this study the coupled optimization
and finite element technique has been used to the case of raft foundations built on a soft
ground to achieve an economical design by satisfying the design criteria. Further, the
optimization technique has also been applied to the retaining wall structures.

Apparently with the increasing population trend around the world, the land resources
especially in urban areas are limited. In spite of the fact, the costs of such land resources are
very high, the demand also grows up significantly in modern society. Unfortunately, the
existing land on which structures are built naturally have their special problems. The soil
strata in some areas are good and stable but there are soft and unstable soils in other areas.
Therefore, it is necessary to provide safe designs (structures built on soft ground) with
economical costs.

In order to design economically, it is necessary to propose appropriate design variables, so
that the structural responses such as displacements and stresses in the system are within the
allowable values. To obtain an optimum solution without performing a number of analyses,
the combination of the structural optimization and the finite element method has been
successfully applied to linear analysis of raft-pile foundations (Tandjiria et al. 1996). Further,
the method was extended to nonlinear analysis of raft-pile foundations (Valliappan et al.
1997).

BASIC MODULES FOR STRUCTURAL OPTIMIZATION

The three main modules required in structural optimization problems are analysis module,
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optimization module and interface module. In the analysis module, either analytical or
numerical techniques, such as the finite element method, are used to determine the response of
the structure due to the applied loads. The optimization module involves the selection of the
optimization method. The generalized reduced gradient (GRG) method is used as the
optimization solver (Lasdon et al. 1978). The interface module couples the analysis and the
optimization modules. This is an important stage in the optimization process, which involves
processes such as sensitivity analysis and constraint approximation. Depending on the
constraint formulation chosen, more initial values of each design variable may be required.

The automatic mesh generation has also been developed in this study. In addition, the
design element concept has also been applied for representing the shape variables (Imam
1982).

SENSITIVITY ANALYSIS

The sensitivity analysis is carried out to calculate the gradients of the constraints with
respect to each design variable, which are necessary for constructing constraint approximation
functions. The finite difference procedure which is simple and straightforward is adopted in

this study.
The sensitivity value of a constraint function g(x) with respect to the a design variable, x, is

defined as:

gg(x) _ g(x+Ax)-g(x) (1)
ix o

where Ax is a perturbation of the design variable, x.

CONSTRAINT APPROXIMATION

In order to provide correlations between the design variables and the responses of the
structure, one or more constraint approximations should be generated. In this study, the
combination of the extended bi-point constraint approximation and the Lagrangian polynomial
constraint approximation is presented (Tandjiria et al. 1998).

Bi-point Constraint Approximation

Bi-point constraint approximation involves two initial points for each design variable. Let
x; and x; be the two initial points of a design variable with values of g(x;) and g(x;) and their
first derivatives g'(x;) and g'(x;). The constraint approximation at any point within or outside

the ranges x; and x; is calculated using the following formula.

» for the range between x; and x; the approximation function may be given as:
gap(X)=arxX’ + axx’ + a3x + 0y (2)

where a;, az, a;, and ay are cubic coefficients which are the functions of g(x;), g(x2), g'(x1)
and g'(x,) and x is the design variable at which the constraint value is being estimated .




* for points beyond x; and x, two conditions may be identified:
a) Condition1:g(x;)g'(x2) >0

8pp(X) = g(x1) +(x-x1)g(x1)0;, forx, <x<x 3)
8pp(X) = g(x2) +(x-x2)g'(x2)0:, forxs<x<xy “4)

where ggp(x) is bi-point approximation of the constraint at x, x; is the lower bound of the

design variable and xy; is the upper bound of the design variable. The parameters 6; and 6, are
functions of g(x;), g(x2), g'(x;), g'(x2) and g’ which is the gradient between the two points.

b) Condition 2:g'(x;) g'(x2) <0

2
8sp(X) = Bix” + Byx + By )
where parameters f3;, 8> and f3; are functions of g(x;), g(x2), g'(x;) and g'(x>).
Lagrangian Polynomial Constraint Approximation

Lagrangian polynomial constraint approximation for N number of design variables can be
expressed as:

gp(X)=g(X,)+ EZ(L; (g, - 2:) (6)

7=1 =1

where (X) is a vector containing all design variables, i.e. [x;, X2, X3, ... , Xn), (Xo) 1s the vector
of initial design variables of (X) about which the approximation is created, n; is the number of
design points chosen in the " design variable, L;; is the Lagrangian shape function at point j of
the i™ design variable, g;i is the constraint value at point j of the i" design variable and g, is
the initial value of the /"™ design variable.

Extended Bi-point Constraint Approximation

It is evident that when more design points are chosen, the approximated values will be
improved. However, using more than three design points is not efficient due to expensive
analyses to be performed. Thus, the extended bi-point constraint approximation, which uses
only three basic design variables, i.e. x;, x> and x3, is an alternative.

Bi-point constraint approximation which is applied separately for two ranges of the design
variable, i.e. between x; and x, and between x, and xy forms the extended bi-point constraint
approximation. By combining the results of the two ranges, global results of the
approximation are obtained.

Combination of Extended Bi-point and Lagrangian Polynomial Constraint Approximation
Although the extended bi-point approximation can be carried out by selecting three

reference values of each design variable, the formulation is only for a single design variable
and the functions are discontinuous. On the other hand, Lagrangian approximation requires




more data points for each design variable and hence is not economical when dealing with
large problems especially in nonlinear analysis. Therefore, a special procedure is developed
here to combine the two approximations in order to predict the constraint values accurately
and effectively. Firstly, the extended bi-point constraint approximation is carried out for each
design variable. Then, several basic points for each design variable which are required for
formulating the Lagrangian polynomial constraint approximation are obtained from the results
produced by the extended bi-point approximation.

NUMERICAL RESULTS
Raft Foundation on Soft Soils

It is proposed to design optimally a raft foundation subjected to uniformly distributed load.
For this particular example, the dimension of the foundation has been fixed. The foundation is
subjected to a vertical load of 30 kPa. The width of the foundation is 10 m. Figure 1 shows the
configuration of the foundation. Due to symmetry, only a half of the system is considered in
the finite element analysis.

Fig. 1 Configuration of raft foundation

The existing soil layer is a very soft clay having a modulus of elasticity of 2 MPa and
Poisson’s ratio of 0.499. The ratio between the elastic modulus and the cohesion of soil is
500. The concrete has a compressive strength of 25 MPa, elastic modulus of 24000 MPa and
Poisson’s ratio of 0.2.

The objective of the design is to minimize the cost of the raft foundation. The cost of the
foundation including costs for labour, material and plant requirements is based on the
commercial industrial building cost guide, NSW, Australia (1995). The design variables
chosen in this problem are the raft thickness, the width and the depth of the stabilized soil and
the material used for the stabilized soil which is represented using the values of elastic
modulus. Besides the constraints mentioned previously, there are size limits of the design
variables which are between 0.5 and 1.5 m for the raft thickness, between 5 and 8 m for C,
between 0.5 and 1.5 m for D and between 2 and 100 MPa for clastic modulus of stabilized
soil. It is assumed that the material chosen for the stabilized soil can be achieved by selecting
better materials and a compaction process. Table 1 shows the different types of materials and
their elastic moduli used for soil improvement. Since the nonlinear behaviour of both the soil
and the concrete has been already considered in the analysis with the use of Drucker-Prager
criterion, only the maximum settlement and differential settlement are chosen as the
constraints.
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Table 1 Elastic modulus and type of soil

Types of soil Elastic modulus (kPa)
Existing soil 2000
Compacted soil 15000
Sand 22000
River gravel 100000

A raft thickness of t =1 m, C=8 m, D = 3 m and E = 100 MPa are selected as the initial
design variables for this problem. Besides the above initial design variables, two other
supplementary design points for each design variable have been selected for the purpose of
constraint approximation.

For this case, only one design cycle was required to obtain the optimal result and satisfy the
convergence criteria. The optimal cost of the foundation and its improvement is about
A$ 2380.00 whereas the cost of the original design was A$ 3920.00 and hence, A$ 1540.00
can be saved. The corresponding design parameters are raft thickness of 0.67 m, width of soil
improvement of 10 m, depth of soil improvement of 3 m and elastic modulus of the stabilized
soil of 45 MPa. It is noted that the error between the results of the approximated constraints
and their corresponding results from the finite element analysis is only 5%. Table 2 shows
the constraint ratio values for the initial and optimal design of the raft foundation. The
constraint ratio is defined as the ratio of the value of a particular constraint to its
corresponding allowable value. It can be seen that both the settlement and the differential
settlement constraints are nearly at their bounds. It can be understood that the constraints at
the optimal design are higher than those at the initial design because the dimension of the
foundation and the stabilized soil are smaller and the quality of material chosen for the
stabilized soil under the foundation is lower at the optimal design than those at the initial
design.

Table 2 Constraint ratio values for the initial design and final design

Constraint ratio Initial design Final design

Settlement 0.40 0.97
Differential settlement 0.61 0.98
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Fig. 3 Displacement ratio versus half
width of stabilized soil

Fig. 2 Displacement ratio versus raft
thickness
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Figures 2 to 5 show the displacement ratio versus raft thickness and width, depth and
elastic modulus of the stabilized soil, respectively. All figures were obtained from the
extended bi-point constraint approximation.

Cantilever Retaining Walls

The retaining wall is of 9 m height and the base of the wall is embedded into firm soil.
Four cases are considered in this analysis, with a combination of sand and clay back fill soil
and inclination of its surface. The clay back fill has the unit weight of 17.3 kN/m®, cohesive
strength of 48 kPa, modulus of elasticity of 14400 kPa and Poisson’s ratio of 0.3. The unit
weight of the sand is 19 kN/m’> with internal friction angle of 30°, modulus of elasticity of
23500 kPa, and Poisson’s ratio of 0.25. The cohesion of the firm clay under the foundation is
167.6 kPa with modulus of elasticity and Poisson’s ratio of 34480 kPa and 0.3 respecnvely
The wall is made of reinforced concrete with unit weight of the concrete as 24 kN/m”.

[3

Backfill: v, ¢, ¢

E, u

X: ¢ | ]

ancnuming

Firm soil: ¢, E, L Sliding —=

Fig. 6 Data for the soil and the wall Fig. 7 Constraints and variables

Rankine active earth pressure is adopted for stability evaluations of the retaining wall. The
stability of the wall is checked against overturning about the toe, sliding along the base and
bearing capacity of the foundation. The factor of safety for overturning about the toe is
expressed as the ratio of the sum of the resisting moment about the toe to the moment of the
active force about the same point. The factor of safety against sliding is the maximum
resisting force along the base divided by the horizontal active force. The factor of safety for
bearing capacity is determined by dividing the ultimate bearing capacity of the base soil by the




used as constraints in optimization analysis. Figure 6 shows the geometry of the system
analysed whereas Figure 7 shows the constraints and variables adopted.

By assuming that the volume of the retaining wall is proportional to the cost, optimization
is aimed at minimizing the volume of the material. The thickness of the wall and the length of
the base are chosen as variables for the optimization problem. The objective function can be
written as :

f(x)=h'x;+x2(x;+x3+x4) (7)

where 4 is height of the wall (9 m), x; is thickness of the wall, x; is thickness of the base, x3
and x4 length of the toe and the heel respectively.

The size limits of the design variables are between 0.3 and 1 m for the thickness of the
wall, between 0.3 and 1 m for the length of the toe and between 1 and 5 m for the length of the
heel. The minimum values of the constraints are 2.0 for both the factor of safety against
overturning and sliding and 3.5 for the factor of safety for bearing capacity.

Sensitivities of the stability to changes of the design variable are evaluated and then applied
for gradient of constraint functions. Each variable is perturbed in stability analysis to develop
the constraint functions. For this purpose, the finite difference technique is adopted. The
constraint function can be written according to the formula :

gi(x) = gio+dg/dx(x;-x1,0)+dg/dx(x2-x;, 0)+dgldx(x3-x3,0)+dg/dx(x4x40) (8)

Tables 3 to 6 present the results of the coupled analyses of stability and optimization
evaluations. Three design cycles were required to obtain the optimal result for the cases in
Tables 3, 4 and 5 whilst only two design cycles for the case in Table 6. It can be seen that for
the case in Table 3 even though cycle 1 provides the same value as in cycle 2, the factor of
safety for sliding is violated. In cycle 2 and 3 this has been achieved. However for practical
purposes the value of 3.0 m for the length of the heel in cycle 2 will be adopted instead of 2.83
m in cycle 3. For the case in Table 4, even though the volume in cycle 1 is less, the factor of
safety for bearing is violated. Hence, cycle 2 and 3 have been proceeded with. Again, for
practical purposes, the heel length of 3.5 m (cycle 2) will be adopted instead of 3.45 m (cycle
3). For the case in Table 5, only cycle 3 provides the required factor of safety. For the case in
Table 6, the required safety factor are obtained in cycle 2. But for practical purposes, using the
value of 3.75 m for heel length in cycle 2 and achieving a factor of safety of 3.49 for bearing
is good enough.

Table 3 For clay back fill

Initial Cycle 1 Cycle 2 Cycle 3

Wall thickness (m) 0.5 0.3 I 0.3 I 0.3
Base thickness (m) 0.5 03 : 03 : 03
Toe length (m) 1.0 1.0 ! 0.5 : 0.5
Heel length (m) 3.0 P& P30 283
FS overturning 3.87 2.83 3.09 2.81
FS sliding 2 1.99 2.10 2.00
FS bearing 4.88 3.50 3.66 3.50
Volume (m") 8.75 3.84 3.84 3.79




Table 4 For sand back fill

Initial Cycle 1 Cycle 2 Cycle 3

Wall thickness (m) 0.3 R e e T
Base thickness (m) 0.3 O Lasli . . 03
Toe length (m) 1.0 1.0 ; 1.0 I 1.0
Heel length (m) 4.8 B e e T
FS overturning 4.15 2 ' 2,53 2.49
FS sliding 4.03 2.98 3.17 3.15
FS bearing 4.48 add 3.54 3.50
Volume (m°) 4.53 4.05 4.15 4.13

Table 5 For clay back fill with a slope of 15 degrees

Initial Cycle 1 Cycle 2 Cycle 3

Wall thickness (m) 0.3 0.3 0.3 I 0.3 |
Base thickness (m) 0.3 0.3 0.3 5 10 gy
Toe length (m) 1.0 0.5 0.5 : 0.5 I
Heel length (m) 5.0 4.1 4.3 . S
FS overturning 5.83 4.08 4.30 4.41
FS sliding 2.30 1.94 1.99 2.01
FS bearing 6.18 4.05 4.16 4.21
Volume (m’) 4.59 4.17 4.25 4.26
Table 6 For sand back fill with a slope of 15 degrees
Initial Cycle 1 Cycle 2
Wall thickness (m) 03 : 03 ! 03
Base thickness (m) 0.3 I 0.3 i 0.3
Toe length (m) 1.0 ! 1.0 E 1.0
Heel length (m) 35 375 1 376
ES overturning 2.56 2.80 2.81
FS sliding 2.62 2.72 2.73
FS bearing 3.30 3.49 3.50
Volume (m") 4.14 4.20 4.22
Table 7 Maximum displacements
Back fill Slope of surface Maximum displacement

Clay 0° 42 cm

Sand 0° 15.6 cm

Clay 15° 42 cm

Sand 15° 20.6 cm

The finite element simulation by displacing the wall away from the backfill to get the
maximum displacement is conducted based on optimal design of the retaining wall structure.
The analysis is plane strain condition and the wall is assumed to behave as elastic. The soil is
assumed to behave as elastic perfectly plastic. The finite element mesh and the yield surfaces
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of the soil behind the wall are shown in Fig. 8. The finite element analyses indicate that the
slope of the yield zones on the back-fill behind the wall with respect to the horizontal is about
45° for clay ( $=0) and about 60° for sand (¢=30°). These failure lines are about 45 + ¢/2 with
respect to the horizontal and hence agree with Rankine’s slip lines for active condition. Table
7 shows the maximum displacement of the retaining structures.
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Fig. 8 Finite element mesh, displacement and yielded zones

CONCLUSIONS

The optimization technique applied to geotechnical structures has been presented in this
paper. It is found that using the optimization technique, the cost of the geotechnical structures
can be minimised by taking into consideration various design variables such as the dimensions
and the material parameters.

The finite difference sensitivity method and the combination of extended bi-point
constraint approximation and Lagrangian polynomial constraint approximation are found to be
very useful for the combined finite element and optimization approach.

For a raft foundation under the uniformly distributed load, it has been found that both
displacement and differential displacement are close to their bounds. The yield zones behind
the retaining walls with the optimal design variables, agree with Rankine’s active slip lines. It




is concluded that the proposed combination of optimization technique and finite element
method is efficient in designing geotechnical structures in lowland areas.
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