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 Coupling of water balance model and floodplain inundation 
model is developed to receive projected rainfall time series from 
two types of regional climate model (RCM). Providing Regional 
Climates for Impacts Studies (PRECIS) and Meteorological 
Research Institute (MRI) are RCM with resolution 0.2 x 0.2 
degree (grid si]e 20 x 20 km) daily time step, from year 2015-
2044. They are generated from ECHAM 4 climate models.  
Empirical quantile mapping is used for bias correction of 
projection rainfall that its adjustment factors are estimated from 
comparison between observed and past projection rainfall from 
base-time period, year 1985-2014. A floodplain inundation 
model is applied based on 1D rating curve approach. This 
model receives peak runoffs as results from the water balance 
model, and generate flood extent in flood plain and draw flood 
inundation map of Chiang Mai municipality with different return 
periods. These expected results show the increase of flood 
inundation extent as a consequence of climate change. 
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1. Introduction  
 
The impact assessment studies of climate change in 

various basins different part of the world indicate 
changes in the amount of precipitation, its frequency and 
intensity affecting the magnitude and seasonal pattern of 
streamflow.  Sharma and %abel (Sharma and %abel, 
2013) use the rainfall-runoff model (HEC-HMS) to receive 
time series of future projection rainfall from 
ECHAM4/OP<C general circulation model (GCM) for 
upper Ping river basin after they are improved by bias-
correction and spatial disaggregation.  Simulated results 
suggest a decrease of 13-19 % in annual streamflow and 
a shift in seasonal streamflow pattern.  For regional and 
national scale studies, GCMs are a common tool to 

generate future projection climate variables at a coarse 
scale.  For local scale such as basin level, many studies 
have applied different bias-correction and downscaling 
approaches to improve the local patterns of climate 
variables.  Regional climate models (RCMs) are 
commonly used to transform coarse resolution GCM data 
to the local scale.  Sharma and %abel (Sharma and %abel, 
2013) use Gamma-Gamma distribution for rainfall 
intensity correction and use disaggregation model based 
on multiplicative random cascade approach for 
downscaling.  To reduce bias of RCM simulation from 
Providing Regional Climates for Impacts Studies 
(PRECIS) and ECHAM4 climate models, %oonrawd and 
Jothityangkoon (%oonrawd and Jothityangkoon, 2015a) 
use distribution mapping based on derived adjustment 
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factors (AF), which is the ratio of observed and simulated 
rainfall depth for a given frequency of occurrence. They 
found that the combination of using seasonal AFs derived 
from monthly rainfall data for each month of all years, and 
AFs derived from all daily rainfall data and used to shift 
distribution of daily rainfall intensity provide the best 
improvement of simulated rainfall.  Potential effect of both 
climate and land use change on the extreme flood for the 
upper Ping River %asin was studied by Jothityangkoon et 
al. (Jothityangkoon et al., 2013).  A distributed rainfall±
runoff model appropriate for extreme flood conditions is 
used to generate revised estimates of the Probable 
Maximum Flood (PMF).  For mapping space-time flood 
extent of Chiang Mai floods, developed a coupling of a 1-
D flood routing model and quasi 2-D floodplain inundation 
model to simulated temporal extent of flood area 
(%oonrawd and Jothityangkoon, 2015b). This rainfall-
runoff model and inundation model is used to receive 
future projection rainfall after bias correction and to 
delineate flood map in this study.  :uthiwongyothin et al. 
(:uthiwongyothin et al., 2017) assessed the effects of 
climate change of the upper Ping River basin by using 
future projection rainfall from the ECHAM5 and the 
CCSM3 global climate model (GCM) They found that 
averaged discharge of inflow to %humibol dam increase 
to 17.3 % from 5.25 to 6.36 billion m3 at the end of the 
21th century (2016-2099). Tangang (2017) presents 
simulation output of more than ten CMIPS Global Climate 
Model (GCMs) from Southeast Asia Regional Climate 
Downscaling Experiment/ Coordinated Regional Climate 
Downscaling Experiment (SEACLID/CORDE;).  
Simulated results show a tendency of wetting in the 
northern area of equator by the increasing frequency of 
projected rainfall intensity 20 and 50 mm/day for near, 
mid, and end-of-century, and the increase of projected 
annual maxima for daily rainfall and daily rainfall intensity 
with 10 year return period. In contrast, the drying 
tendency is clearly increased such as the increase of 
projected consecutive dry day. 

This paper assesses the impacts of climate change 
on maximum annual discharges in the upper Ping River 
of Thailand and focusing on the future expansion of flood 
inundation in community area of Chiang Mai municipality 
and its vicinity, which is an initial step to develop possible 
flood ha]ard map (Osti et al., 2008). 
 
 
�. Study area and RCM data 

 
The Upper Ping River catchment is located in the 

north of Thailand.  The river flows southward through the 
valley of Chiang Mai. The catchment area upstream of 
stream gauge station P1 (Navarat %ridge) and P68 (%an 

Nam Tong) are 6,350 and 6,430 km2, respectively 
(%oonrawd and Jothityangkoon, 2015b). The flood study 
area covers about half of Chiang Mai municipality (40.2 
km2) and two districts (Pa Daet, 25 km2 and Nong Hoi, 
3.67 km2) which lie on the floodplain of the Upper Ping 
River. 
Observed flood inundation area 

The observed flood inundation area from past floods 
was defined based on relationship between flood level at 
P1 and flood depth measured in the city during past flood 
events. Flood warning system for Chiang Mai city was set 
up in the form of flood ha]ard maps by Civil Engineering 
Natural Disaster Research Unit (CENDRU) (CENDRU, 
2013).  Inundation areas were divided into seven ]ones 
depending on upstream referenced water level at P1 (see 
Table 1 and Fig. 1). 

 
RCM data and observed rainfall 

Two sets of time series of projection rainfall are 
generated from Providing Regional Climates for Impacts 
Studies (PRECIS) and Meteorological Research Institute 
(MRI) which receives input data from ECHAM4 climate 
models with resolution 0.2 x 0.2 degree (grid si]e 20x20 
km.) daily time step, baseline period from year 1985-2014 
(30 years) and future projection period from year 2015-
2044 (30 years). The simulation covers the 
Intergovernmental Panel on Climate Change (IPCC) 
emission scenarios A2 and %2. For this study, only A2 is 
selected (%oonrawd and Jothityangkoon, 2015a). Japan 
Meteorological Agency (JMA) developed operational 
forecast model for a quasi-equilibrium experiment under 
a doubled atmospheric CO2 condition called MRI-AGCM 
3.1S version (AR4) (high-resolution atmosphere-only 
general circulation models, AGCMs). %aseline periods of 
projected rainfall are divided into 3 periods: past (1979-
2006), near future (2015-2039), far future (2075-2099) 
(Koontanakulvong et al., 2015).  A 30 year time¶s series 
(1985 - 2014) of observed daily rainfall from selected 42 
rain gauges over the Upper Ping River basin is used to 
compare with projected rainfall from RCMs. 
 
 
�. MetKodology  

 
To construct a map of floodplain inundation, the 

flowchart of 7 main steps is presented in Fig. � and each 
step is explained in details in the following sub-section. 

 
3.1 Derived AFs 

The method of higher-skill bias corrected RCM data 
or empirical quantile mapping is operated based on 
derived adjustment factors (AF), which is the ratio 
between observed and simulated rainfall for a given 
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frequency of occurrence. Correcting only the monthly 
mean precipitation can distort the relative variability of the 
inter-monthly precipitation distribution, and may adversely 
affect other moments of the probability distribution of 
daily precipitations. For bias correction test, the 
complexity of derived AFs is added in 5 method 
(%oonrawd and Jothityangkoon, 2015a).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Method 1: AFs are derived from all daily rainfall data and 
used to shift distribution of daily rainfall intensity (daily 
AFs for daily).  
Method 2: temporal scaling of input rainfall data is 
changed from daily to monthly (monthly AFs for monthly).   
Method 3: is similar to Method 2, the difference is AFs 
are used to adjust distribution of daily rainfall (monthly 
AFs for daily). 
Method 4: seasonal AFs are derived from monthly rainfall 
data for each month of all years and used to shift 

distribution of monthly rainfall of each month (seasonal 
monthly AFs for monthly). 
Method 5: is the combination of Method 4 for the first 
step and Method 1 for the second step (seasonal monthly 
AFs for monthly+ daily AFs for daily). 

(%oonrawd and Jothityangkoon, 2015a) found that the 
Method 5 provides the best derived AFs compare to the 
other methods. An example of testing results from the 
Method 5 is shown in Fig. � for PRECIS rainfall and Fig. 
� for MRI rainfall.  For calibration step, AFs are estimated 
from observed and simulated rainfall from RCM rainfall 
during 1982-1996 (15 years). For verification step, these 
estimated AFs are used to correct RCM rainfall during 
1997-2011 (15 years) and compare to observed rainfall in 
the same verified period.  For further testing in this study, 
the Method 5 is used to derive AFs for many locations of 
available observed rainfall. Finally, this method is used to 
derive AFs for every grids of RCM data. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3.2 Application of AFs for future projection rainfall  

AFs are estimated again using the whole historical 
data (1982-2011, 30 years) for each grid.  These AFs are 
used for bias correction of future projection rainfall at all 
grids of RCM data.  

  
3.3 Assignment of corrected future rainfall to 
subcatchments. 

A time series of corrected future rainfall from a grid 
that give the shortest distance between the centroid of 
RCM grid and the subcatchment is assigned to the 
subcatchment. 

 
3.4 Generation of time series of simulated runoff. 
      A hydrological model used in this study is an 
adaptation of a sub-catchment based distributed water 
balance model developed by Jothityangkoon et al. (2013). 
The model has two components: a hillslope runoff 

 
Fig. 1. Observed flood inundation area by Civil Engineering 
Natural Disaster Research Unit (CENDRU). 

Table 1 Observed flood inundation area from past floods. 
Observed 

flood  
(m3/s) 

:ater level 
at P1  
(m) 

Inundation 
area  
(km2) 

Return 
period  
(year) 

510 3.90 0.353 7.90 
530 4.00 1.259 9.15 
560 4.10 1.761 11.40 
580 4.20 2.689 13.25 
600 4.30 6.505 15.40 
673 4.60 8.138 26.80 

 

 
Fig. �. Flowcharts for constructing a map of floodplain 
inundation. 
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generation model and a distributed flood routing model.  
The hillslope water balance model contains a number of 
parameters, which are measured or derived a priori from 
climate, soil and vegetation data or streamflow recession 
analyses. %ased on the dynamics of water balance 
concept, discharges from each subcatchment are 
generated from 2 different runoff generation processes: 
saturation excess runoff and subsurface runoff. The 
catchment area upstream of P1 is divided into 62 
subcatchments. The routing model based on a 
configuration of channel storages in parallel and series 
using constant averaged flow velocity (49.5 km/day), 
estimated from time lag of observed hydrographs within 
the catchment.  This model is applied to receive runoff 
from each subcatchment and route through river network 
to the outlet at P1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3.5 Construction of flood frequency curve. 

Annual maximum of observed or simulated runoff is 
estimated from a time series of observed or simulated 
daily runoff and results from frequency analysis of the 
annual maximum are plotted in Gumbel distribution paper. 

 

3.6 Defining annual maximum floods 
The Extreme Value Type I distribution or Gumbel 

distribution is used to fit the observed or simulated 
annual maximum runoff.  For a given specific return 
period, annual maximum flood can be estimated. 

 
3.7 Mapping of flood inundation 

Flood at specific return period is converted to flood 
level by using simulated rating curve for a compound 
channel developed by Jothityangkoon (Jothityangkoon et 
al., 2013)  Flat level of water surface is assumed and 
used to define intersection point between water surface 
and floodplain.  At the same time, the shape or cross 
section of floodplain is estimated based on trial and error 
processes until assumed shape provides a good fit 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
between estimated and observed flood extent in Fig. 1.  
For each river cross section with estimated rating curve 
and the shape of floodplain, the distance of flood extent 
from the main channel for any flood magnitudes is 
calculated and use to draw flood map. 
 

 
Fig. �. Input rainfall from MRI (Method 5), Comparison of 
observed, projected and adjusted rainfall at Sta. 327021, for 
calibrated results (a) to (d) and for validated results (e) to (h), 
consisting of exceedance probability of observed, projected 
and adjusted data (daily, monthly annual and mean monthly 
rainfall). 

 

 
Fig. �. Input rainfall from PRECIS (Method 5), Comparison of 
observed, projected and adjusted rainfall at Sta. 327021, for 
calibrated results (a) to (d) and for validated results (e) to (h), 
consisting of exceedance probability of observed, projected 
and adjusted data (daily, monthly annual and mean monthly 
rainfall). 
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�. Results and 'iscussion  

 
Return period of observed annual maximum flood in 

the fourth column of Table 1 shows that the return period 
of maximum observed flood for flood warning is about 27 
years.  %y using derived AF based on Method 5 
(combination of seasonal monthly AFs for monthly data 
and daily AFs for daily data),  exceedance probability of 
annual and mean monthly projected rainfall are shifted 
close to observed rainfall (Figs. �� ��b�� �c�� �f�� �g�).  For 
intra-annual variability, adjusted mean monthly rainfall 
has a good agreement with observed mean monthly 
rainfall for both PRECIS and MRI, calibration and 
validation period, coefficient of determination (R2) ! 0.89 
and  Nush-Sutcliffle efficient (E) ! 0.84. 
      Figure � and Table � present observed and 
simulated annual maximum flood from different input 
rainfall.  Simulated annual maximum flood from the water 
balance model with receiving observed rainfall similar to 
observed runoff for all return periods.  Although, the time 
series of past projected rainfall from PRECIS and MRI 
are improved by bias correction using AFs, when the 
model receives past projected rainfall, simulated annual 
maximum is about 22-24 % for PRECIS and 31-35 % for 
MRI higher than simulated flood from observed rainfall. 
Due to climate change, if the model receives future 
projected rainfall, simulated annual maximum flood is 
about 31-35 % for PRECIS and 94-104 % for MRI, higher 
than simulated flood from observed rainfall (Table �).    

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

In term of flood inundation area, future projected rainfall 
gives about 89.5, 20.8, 10.2, 7.0 % increase for PRECIS 
and 91.2, 30.4, 22.1, 21.5 % increase for MRI of 
inundation area compare to past flood area for 10, 25, 50 
and 100 years return period, respectively (Table �).  
Flood inundation maps and its boundary are presented in 
Fig. � for PRECIS input and in Fig. � for MRI input.  
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Table � Annual maximum flood from different methods. 
Return 
period 
(year) 

Observed 
Max. 4 
(m3/s) 

Simulated annual maximum flood 
from (m3/s) 

Observed  
rainfall 

Past projected R 
PRECIS MRI 

10 524 542 649 696 
25 663 664 806 869 
50 754 754 923 998 
100 843 844 1,038 1,125

 
 
 
 

Return 
period 
(year) 

Observed 
Max. 4 
(m3/s) 

Simulated annual maximum flood 
from (m3/s) 

Observed  
rainfall 

Future projected R 
PRECIS MRI 

10 524 542 706 1,014
25 663 664 866 1,298
50 754 754 985 1,509
100 843 844 1,103 1,718

 

Table � Flood inundation area. 
Return 
period
(year)

Flood inundation area (km2) 
Past 
floods

Future rainfall : 
PRECIS 

Future rainfall : 
MRI 

area Increase 
(%) 

area Increase 
(%) 

10 0.895 8.493 89.47 10.208 91.24 
25 7.677 9.692 20.79 11.030 30.40 
50 9.010 10.036 10.23 11.563 22.08 
100 9.621 10.339 6.95 12.258 21.51 

 

 

 
 
Fig. �. Comparison of flood frequency curve between 
observed floods, simulated annual maximum flood from 
observed rain, past projected rain and future projected (a) 
input rainfall from PRECIS, (b) input rainfall from MRI. 
 
 



218 
K.%oonrawd and C.Jothityangkoon / Lowland Technology International 2018; 20 (2): 213-220 

Special Issue on: Green Technology for Sustainable Infrastructure Development 
 

 
 
 
 
 
 
 
 
 
 
!
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

!
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a) Future rainfall from PRECIS, 4 706 m3/s (T  10 year) 

 
 
(b) Future rainfall from PRECIS, 4 866 m3/s (T  25 year) 

 
 
(c) Future rainfall from PRECIS, 4 985 m3/s (T  50 year) 

 
 
 
 

(d) Future rainfall from PRECIS, 4 1,103 m3/s (T  100 year) 

 
 
Fig. �. %oundary of simulated flood inundation from PRECIS 
at return period (a) 10 year (b) 25 year (c) 50 year and (d) 
100 year. 

(a) Future rainfall from MRI, 4 1,014 m3/s (T  10 year)

 
  
(b) Future rainfall from MRI, 4 1,298 m3/s (T  25 year) 
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�. Conclusion  
 
To assess the impact of climate change, a time series 

of future projection rainfall from RCM rainfall models is 
used including PRECIS and MRI with bias correction.  
Combination of a water balance model and flood 
inundation model is linked to generate flood extent in 
flood plain and draw flood inundation map of Chiang Mai 
municipality.  Simulated results show that the increase of 
flood inundation extent as a consequence of climate 
change.  For bias correction method, adjustment factor 
based on empirical quantile mapping from a combination 
of seasonal monthly AF for monthly data and AFs for 

daily data is used to correct future projection rainfall from 
both PRECIS and MRI. %y using a coupling of the 
distributed water balance model and floodplain 
inundation model to convert future projection rainfall from 
PRECIS to runoff and peak discharges and comparing to 
inundation area of past floods, the inundation area in 
Chiang Mai municipality is increased by 89.5, 20.8, 10.2 
and 7.0 % with 10, 20, 50, 100 years return period, 
respectively.  Similar trend occurs for MRI with higher 
percentage than PRECIS, increased by 91.2, 30.4, 22.1 
and 21.5 % with 10, 20, 50, 100 years return period, 
respectively. 

Limitation of this study is the use of projection rainfall 
from only two RCM outputs and using fixed landuse/ 
landcover. As being suggested by many studies of 
climate change impact, the use of more GCM, RCM and 
future IPCC scenario are required for decision-making 
processes in dealing with future uncertainty.  However, it 
is expected that more RCM outputs are easily available in 
the future for this region.  Integrated approach between 
climate change and land use change is recommended for 
future study.  
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