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 In this paper, a weakly singular boundary integral equation 

method is developed for the stress analysis of an anisotropic, 

linearly elastic, cracked whole space possessing a plane of 

symmetry. This study should offer an alternative powerful tool 

essential for the modeling of both near-surface and deeply 

embedded defects in a rock/soil medium. A system of governing 

equations is established using a pair of weakly singular, weak-

form, displacement and traction integral equations for the 

cracked whole space along with the symmetric condition. The 

final equations contain only unknown crack-face data in a lower-

half of the whole space. In addition to their capability to treat 

cracks of arbitrary shape, material anisotropy and general 

loading conditions, all involved kernels are only weakly singular 

allowing all integrals to be interpreted in the sense of Riemann 

sum. A symmetric Galerkin boundary element method together 

with the Galerkin approximation is implemented to solve the 

governing integral equations for the unknown crack-face data. 

To further enhance the accuracy and efficiency of the proposed 

scheme, special basis functions are introduced to approximate 

the near-front field and the interpolation technique is adopted to 

evaluate all kernels for generally anisotropic materials. The 

solved crack-face displacement data is then utilized to post-

process for the essential fracture information along the crack 

front. Various scenarios are employed to verify the proposed 

technique and a selected set of results is presented to 

demonstrate its accuracy and computational robustness.  
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1. Introduction 

 

Modeling and analysis of a medium containing pre-

existing damages and flaws (e.g., dislocations and 

cracks) has been found an essential procedure in the 

fracture-based failure/fatigue assessment. There are 

various situations encountered in practices when 

damages and flaws are located in a region relatively near 

the boundary or deeply inside the body and, in addition, 

their sizes are comparatively small in comparison with the 

characteristic length scale of the body; for instance, the 

modeling of near-surface/deep fractures in a large scale 
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rock and soil medium and simulations of hydraulically 

induced cracks deeply beneath the ground used in the 

production enhancement of natural oil and gas (e.g., 

Mendelsohn, 1984a; Mendelsohn, 1984b; Yew, 1997). To 

simplify the modeling of those physical problems, a half 

space or whole space together with a selected set of 

governing physics (e.g., a theory of linear elasticity and 

linear elastic fracture mechanics) is commonly used to 

describe the response of such large scale cracked body. 

The influence of the remote boundary on the local 

response of interest is generally insignificant and can, 

therefore, be discarded in the modeling without loss of 

accuracy of predicted results. To perform the full analysis 

of such simplified mathematical model, the solution 

procedure plays a crucial role in both the accuracy and 

computational efficiency and it must be properly chosen 

to suit each involved scenario.  

Various analytical techniques such as methods of 

integral transform, representation theories, and potential 

functions have been proposed and used extensively to 

solve various types of boundary value problems with 

semi-infinite and infinite domains (e.g., Srivastava and 

Singh, 1969; Mayrhofer and Fischer, 1989; Wang, 2004; 

Chen and Shioya, 2000). However, their applications are 

quite limited to either two-dimensional problems or three-

dimensional cases with extremely idealized settings. 

Such limitation becomes more apparent when the 

complexity of involved physical phenomena increases 

(e.g., material constitutive laws, presence of singularities, 

and general boundary and loading conditions). To 

enhance the modeling capability, a variety of numerical 

procedures have been continuously developed to solve 

half-space and whole-space problems. Standard finite 

element methods (FEMs) have been well-established in 

the past several decades (Oden and Carey, 1984; 

Zienkiewicz and Taylor, 2000; Hughes, 2000) and 

successfully applied to solve numerous problems in 

various disciplines. It is worth noting, however, that when 

applied to treat problems involving unbounded domains, 

the computational efficiency of FEMs can be significantly 

degraded. For instance, a standard discretization 

procedure cannot be directly applied to infinite and semi-

infinite domains. A domain truncation together with a set 

of proper remote boundary conditions is commonly 

employed to establish an approximate domain of finite 

dimensions prior to the discretization. Another limited 

capability of standard FEMs is apparent when they are 

applied to solve fracture-related problems. In the analysis, 

substantially fine meshes are required in a region 

surrounding the discontinuities in order to accurately 

capture the complex field and extract essential local 

fracture information along the crack front (Swenson and 

Ingraffea, 1988; Martha et al., 1993; Ayhan et al., 2003). 

Boundary integral equation methods (BIEMs) have 

been also well-recognized as one of the most efficient 

numerical techniques for modeling linear boundary value 

problems (e.g., Brebbia and Dominguez, 1989; Cruse, 

1988; Liggett and Liu, 1983). Efficiency of BIEMs over 

standard FEMs becomes more apparent when a domain 

to be treated is unbounded (e.g., Gu and Yew, 1988; Xu 

and Ortiz, 1993; Xu, 2000; Rungamornrat and Wheeler, 

2006; Rungamornrat and Mear, 2008b; Rungamornrat et 

al., 2015), the ratio between the domain-measure and the 

boundary-measure is large, and the domain contains an 

embedded singularity such as dislocations and cracks 

(Rungamornrat and Mear, 2008b; Rungamornrat et al., 

2015; Saez et al., 1997; Li et al., 1998; Frangi et al., 

2002; Ariza and Dominguez, 2004; Rungamornrat, 2006). 

This is due to the key nature of the governing integral 

equation underlying the methods; for a domain that is 

homogeneous and free of distributed source, the 

governing equation involves only integrals over the 

boundary of the domain and the surface of discontinuity. 

Besides those desirable features, BIEMs still possess a 

major drawback associated with the treatment of 

singularity induced by kernels present in the governing 

integral equations. For conventional BIEMs, involved 

strongly singular and hyper-singular kernels often pose 

theoretical and numerical difficulties including the 

existence and interpretation of singular integrals (e.g., 

Martin and Rizzo, 1996; Chen, 2003a), issues associated 

with the smoothness requirement of boundary data (e.g., 

Martin and Rizzo, 1996), and the requirement of 

significant computational cost and special numerical 

quadrature to evaluate involved integrals (e.g., Gray et al., 

1990; Martha et al., 1992; Ariza et al., 1997; Chen, 

2003b; Qin and Noda, 2004; Zhao et al., 2004). To 

circumvent such drawback, the BIEMs based on a set of 

singularity-reduced integral equations are commonly 

employed. 

Regularized BIEMs have been continuously developed 

for past several decades and the historical background 

and current advances relevant to the present study can 

be briefly summarized below. Bui (1977) and Weaver 

(1977) independently developed the singularity-reduced 

traction integral equations for isolated planar cracks in an 

isotropic, elastic whole space under pure mode-I loading 

conditions. The extension to treat material anisotropy was 

carried out later by Sladek and Sladek (1982). While the 

strength of singularity was reduced from hypersingular to 

strongly singular, the regularization was still incomplete in 

the sense that the validity of involved integrals still 

requires the derivative of the relative crack-face 

displacement to be continuous. Within the context of 

fracture analysis in linear elastic media, development of 

the weakly singular boundary integral equations has 
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been well-established. Gu and Yew (1988) was able to 

develop the first weakly singular boundary integral 

equation for the traction. While the derived integral 

equation is completely regularized, the development is 

restricted to an isotropic elastic whole space and a planar 

crack under the pure mode-I loading condition. Xu and 

Ortiz (1993) applied results from the dislocation theory to 

develop the weakly-singular, weak-form traction 

boundary integral equation for modeling isolated cracks 

of arbitrary shapes in an isotropic elastic, whole space. 

Later, Bonnet (1995) exploited the integration-by-parts 

technique together with certain representations of 

fundamental solutions to establish a pair of weakly 

singular displacement and traction integral equations for 

modeling isotropic, linearly elastic, uncracked finite 

bodies. Li (1996) developed a regularization procedure to 

derive the weakly singular integral equations for modeling 

cracks of arbitrary shapes in both isotropic, linearly 

elastic, whole space and half-space. Li et al. (1998) 

extended the work of Li (1996) to derive the weakly 

singular, weak-form integral equations for both the 

displacement and traction and successfully implemented 

the symmetric Galerkin boundary element method to 

solve cracks in isotropic, finite bodies. Later, 

Rungamornrat and Mear (2008a) proposed a systematic 

regularization technique to develop a complete set of 

singularity-reduced integral relations for both dislocations 

and cracks in generally anisotropic elastic media. While a 

vast amount of researches concerning the development 

of weakly singular BIEMs for cracks in unbounded elastic 

media has been well established, most of existing 

investigations are restricted only to the derivation of 

traction integral equation for cracks and the 

determination of stress intensity factors. The analysis for 

the nonsingular terms such as the T-stress along the 

crack front has not been recognized. In addition, the 

integration of existing symmetry to enhance the 

computational efficiency and the treatment of material 

anisotropy for cracks in an elastic half-space under 

symmetric boundary conditions has not been found. 

In the present study, a systematic regularization 

technique proposed by Rungamornrat and Mear (2008a) 

is extended to establish a set of singularity-reduced 

boundary integral equations for either a cracked elastic 

whole space containing a plane of symmetry or a cracked 

elastic half-space subjected to a symmetric condition on 

the free surface. The development is carried out in a 

general framework allowing the treatment of material 

anisotropy, cracks of arbitrary shapes, and general crack-

face loading. The resulting weakly singular, weak-form 

boundary integral equations for both the displacement 

and traction are then employed as the basis in the 

implementation of the weakly singular, symmetric 

Galerkin boundary element method for solving unknown 

crack-face data and post-processing for essential fracture 

information. Remaining sections of this paper are 

organized to incorporate the clear problem description, 

the development of regularized boundary integral 

equations, the solution procedure, results and discussion, 

and conclusions and remarks. 

 

2. Problem description 

 

Consider an elastic cracked whole space   that 

possesses a plane of symmetry as shown schematically 

in Fig. 1(a). A reference Cartesian coordinate system 

1 2 3{ ; , , }x x xO with a set of orthonormal base vectors 

1 2 3{ , , }e e e used in the present development is chosen 

such that the origin O  is located on the plane of 

symmetry; the 3-x axis directs downward normal to the 

plane of symmetry; and the 1-x  and 2-x axes follow the 

right hand rule. The medium is made of a homogeneous, 

anisotropic, linearly elastic material with 3 0x   being the 

plane of material symmetry. The cracks in the 

undeformed state are represented by two geometrically 

identical, piecewise smooth surfaces +

cS  and cS   with the 

 
(a) 

 
(b) 

 

Fig. 1. Schematic of (a) cracked whole space with 3 0x   as plane of symmetry and (b) equivalent cracked half-space with 

symmetric conditions on free surface. 
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outward unit normal vectors 
n  and 

n , respectively. In 

the present study, it is assumed that the body force and 

remote loading are absent and the medium is loaded by 

self-equilibrated tractions on the crack surfaces. It is 

worth noting that the influence of the body force and 

remote loading condition can be readily treated via the 

superposition technique together with an uncracked state. 

In addition to an elastic field induced within the cracked 

medium due to applied loadings, the essential fracture 

data such as the relative crack-face displacement, the 

stress intensity factors, and the T-stress components 

along the crack front are of primary interest. 

From the symmetry of all prescribed data, it can be 

verified that an elastic field of a lower-half of the cracked 

whole space shown in Fig. 1(a) is identical to that of a 

half-space containing the same crack and subjected to 

symmetric boundary conditions on the free surface (i.e., 

the displacement normal to the free surface 3u  and shear 

tractions 
13 23,σ σ  vanish) as indicated in Fig. 1(b). As a 

result, it is sufficient to solve the equivalent cracked half-

space and then exploit the symmetry to obtain the 

complete solution of the cracked whole space. Using 

such reduced domain in the simulations clearly reduces 

the number of degrees of freedom approximately by half. 

 

 

3. Formulation of governing equations 

 

This section presents the development of a set of 

completely regularized boundary integral equations for 

the cracked whole space possessing a plane of 

symmetry shown in Fig. 1(a). The derivation is carried 

out only for the lower-half of the domain or, equivalently, 

for the equivalent cracked half-space shown in Fig. 1(b). 

First, the displacement and stress fundamental solutions 

for an uncracked half-space subjected to the symmetric 

condition on the free surface are constructed and such 

results are then utilized to form a pair of boundary 

integral relations for the displacement and stress of the 

equivalent cracked half-space. Finally, a systematic 

regularization technique based on the integration by parts 

via Stokes’ theorem is adopted to establish a set of 

singularity-reduced boundary integral equations. Special 

representations of involved kernels essential for assisting 

such regularization procedure are also provided in details. 

 

3.1 Fundamental solutions for uncracked half-space 

under symmetric conditions   

 

To construct the fundamental solutions for the 

displacement and stress of an uncracked half-space 

subjected to symmetric boundary conditions on the 

surface 3 0x  , the existing fundamental solutions of an 

elastic whole space (Ting and Lee, 1997; Wang, 1997) 

can be employed together with the symmetry as 

described below. 

Now, consider the equivalent uncracked half-space 

subjected to symmetric boundary conditions and a unit 

concentrated force ip iδ e  at a source point k k= xx e  as 

illustrated in Fig. 2(b) where ipδ  denotes the Kronecker-

delta symbol. Here and in what follows, standard indicial 

notation and Einstein summation convention apply. It is 

apparent that the considered half-space is identical to the 

lower half of a uncracked whole space subjected to a unit 

concentrated force ip iδ e  at a point k k= xx e  and a unit 

concentrated force ip iδ e  at the image point k k= xx e  as 

illustrated in Fig. 2(a) where k kp px = δ x  and ipδ  are defined 

by 11 22 33= = =1δ δ δ  and 0ijδ   for i j . The symmetric 

boundary conditions (i.e., 3 = 0u and 13 23= = 0σ σ ) are 

automatically satisfied along the plane 
3 0x   of the 

whole space for the given applied loads. Upon employing 

this correspondence together with the superposition of 

the whole space fundamental solutions, the fundamental 

solutions for the displacement and stress of the 

uncracked half-space under the symmetric boundary 

conditions, denoted respectively by ( , )p

jU ξ x  and ( , )p

ijS ξ x , 

 
(a) 

 
(b) 

Fig. 2. Schematics of (a) uncracked whole space under unit concentrated force ip iδ e  at x  and unit concentrated force ip iδ e  at image 

point x  and (b) uncracked half-space under symmetric boundary conditions on 3 0x   and unit concentrated force ip iδ e  at x . 
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can be obtained as 

 

( , ) ( ) ( )p p k

j j pk jU U U   ξ x ξ x ξ x
 

[1] 

( , ) ( ) ( )p p k

ij ij pk ijS S S   ξ x ξ x ξ x
   

[2] 

 

where ( )p

jU ξ x  and ( )p

ijS ξ x  are the displacement and 

stress fundamental solutions of an uncracked whole 

space under a unit concentrated force ip iδ e  at a source 

point k k= xx e . The explicit form of ( )p

jU ξ x  and ( )p

ijS ξ x  

can be found in the work of Rungamornrat and Mear 

(2008a), Ting and Lee (1997), and Wang (1997). From 

the structure of ( )p

jU ξ x  and ( )p

ijS ξ x  together with [1] 

and [2], it can be concluded that ( , )p

jU ξ x  and ( , )p

ijS ξ x  are 

singular only at a single point =ξ x  within the half-space 

of (1/ )rO  and 2(1/ )rO , respectively, where || ||r  ξ x . 

 

3.2 Standard integral relations for equivalent cracked 

half-space 

 

By applying the reciprocal theorem to the equivalent 

cracked half-space shown in Fig. 1(b) along with the 

elastic state associated with a fundamental problem of an 

uncracked half-space shown in Fig. 2(b), it yields an 

integral relation for the displacement at any interior point 

x  of the equivalent cracked half-space as 

 

( ) ( , ) ( ) ( ) ( , ) ( ) ( ) ( )

c c

p p

p j j ij i j

S S

u U t dA S n u dA
 

    x ξ x ξ ξ ξ x ξ ξ ξ

 

[3] 

 

where ( ) ( ) ( )j j jt t t   ξ ξ ξ denotes the sum of the 

prescribed crack-face traction; ( ) ( ) ( )j j ju u u   ξ ξ ξ  

denotes the jump in the unknown crack-face 

displacement; and cS ξ  and cS ξ  are two coincident 

points on the crack surface. It should be remarked that 

the reduction to integrals over a single crack surface +

cS  

stems directly from the continuity of the fundamental 

solutions ( , )p

jU ξ x  and ( , )p

ijS ξ x  at any field point ξ . By 

first taking the derivative of [3] to obtain the spatial 

gradient of ( )pu x  with respect to ix  and then employing 

the constitutive law for linear elastic materials, it finally 

yields a boundary integral relation for the stress at any 

interior point x  of the equivalent cracked half-space: 

 

( , )
( ) ( ) ( )

( , )
         ( ) ( ) ( )

c

c

p

j

lk lkpq j

qS

p

ij

lkpq i j

qS

U
E t dA

x

S
E n u dA

x









 




 







ξ x
x ξ ξ

ξ x
ξ ξ ξ

 [4] 

 

From the relations [1] and [2] along with the properties of 

the fundamental solutions ( )p

jU ξ x  and ( )p

ijS ξ x  for the 

uncracked whole space, the kernels ( , )/p

lkpq j qE U x ξ x  and 

( , )/p

lkpq ij qE S x ξ x  contained in the boundary integral relation 

[4] can be further expressed as 

( , )
( ) ( )

p

j j p

lkpq lk jp lk

q

U
E S S

x



    



ξ x
ξ x x ξ  [5] 

( , )
( ) ( )

p

ij lk lk

lkpq ij ia jb ab

q

S
E

x
 


     



ξ x
ξ x x ξ  [6] 

where ( ) ( )/lk p

ij lkpq ij qE S ξ     ξ x ξ x  and ξ  is an image point 

of ξ  with respect to the plane 3 0x  . From the property 

of the stress fundamental solution for the uncracked 

whole space ( )p

ijS ξ x , the kernels ( , )/p

lkpq j qE U x ξ x and 

( , )/p

lkpq ij qE S x ξ x  are clearly singular at =ξ x  of 2(1/ )rO  

and 3(1/ )rO , respectively. The two integral relations [3] 

and [4] form an essential basis for the development of 

governing integral equations for determining unknown 

crack-face data such as the sum of and the jump in the 

crack-face displacements. However, the direct use of 

those integral relations poses certain difficulties including 

the interpretation and numerical treatment of all involved 

strongly singular and hyper-singular integrals. 

 

3.3 Regularized displacement and stress boundary 

integral relations  

 

To regularize the boundary integral relations [3] and [4], 

special decompositions of involved strongly singular and 

hypersingular kernels are first established to aid the 

integration-by-part procedure. The essential component 

for establishing such decompositions is the special 

representations of the stress fundamental solution 

( )p

ijS ξ x  and the hypersingular kernel ( )lk

ij ξ x  for the 

uncracked whole space proposed by Rungamornrat and 

Mear (2008a). Such results are valid for generally 

anisotropic, linearly elastic materials and given explicitly 

by 

 

( ) ( ) ( )p p p

ij ij ism mj

s

S H G



    


ξ x ξ x ξ x  [7] 

( ) ( ) ( )lk tk

ij ijkl ism lrt mj

s r

E C  
 

 
      

 
ξ x ξ x ξ x   [8] 

 

where ism  denotes an alternating symbol; ( ) ξ x  is a 

Dirac-delta distribution centered at x ; and the functions 

( ),p

ijH ξ x  ( )p

mjG ξ x   and ( )tk

mjC ξ x  are defined by 

 

3
( )

4

p i i
ij jp

x
H

r







  ξ x   [9] 

1

2

0

( ) ( , ) ( )
8

mqa qjklp

mj kp a l

E
G z z ds

r







 

  
z r

ξ x z z z   [10] 

1

2

0

( ) ( , ) ( )
8

kjap
tk mtsl
mj ap s l

A
C z z ds

r



 

  
z r

ξ x z z z  [11] 

 

where ( / 3)kjap

mtsl ptd pmq djpl qkms lmps djkqA E E E E   ;  r ξ x ; z  is a 

unit vector; ( , )z z  is a tensor whose components are 

defined by ( , )kp m mkpn nz E zz z ; and 1( , )z z  is the inverse of 

( , )z z . Note that the line integrals appearing in [10] and 
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[11] are traced along a unit circle 1|| z ||  on the plane 

0 z r . It is evident from [9]-[11] that the functions 

( ),p

ijH ξ x  ( )p

mjG ξ x  and ( )tk

mjC ξ x  are singular at =ξ x  

of 2(1/ )rO , (1/ )rO  and (1/ )rO , respectively. By 

employing the relations [2] and [5] together with the 

decomposition [7], the stress fundamental solution 

( , )p

ijS ξ x  and the function ( , )/p

lkpq j qE U x ξ x  for the 

uncracked half-space under the symmetric boundary 

conditions admits the representation 

 

( , ) ( , ) ( , )p p p

ij ij ism mj

s

S H G



 


ξ x ξ x ξ x   [12] 

( , )
( , ) ( , )

p

j j j

lkpq lk lrt tk

q r

U
E H G

x x


 
 

 

ξ x
x ξ x ξ  [13] 

 

where the functions ( , )p

ijH ξ x  and ( , )p

mjG ξ x  are defined by 

 

( , ) ( ) ( )p p k

ij ij pk ijH H H   ξ x ξ x ξ x   [14] 

( , ) ( ) ( )p p k

mj mj pk mjG G G   ξ x ξ x ξ x  [15] 

 

Finally, by applying the decomposition [8] to [6], it yields 

the representation of the kernel ( , )/p

lkpq ij qE S x ξ x  as 

 

( , )
( ) ( )

( , )

p

ij

lkpq ijkl ia jb abkl

q

tk

ism lrt mj

s r

S
E E E

x

C
x

   

 



   



 


 

ξ x
ξ x x ξ

ξ x

    [16] 

 

where the function ( , )tk

mjC ξ x  is given by  

 

( , ) ( ) ( )tk tk tk

mj mj am bj abC C C    ξ x ξ x x ξ  [17] 

 

From the singularity behavior of the functions ( ),p

ijH ξ x  

( )p

mjG ξ x  and ( )tk

mjC ξ x  indicated by [9]-[11], it is 

apparent from [14]-[15] and [17] that the functions 

( , )p

ijH ξ x , ( , )p

mjG ξ x  and ( , )tk

mjC ξ x  are singular only at a 

point =ξ x  of order 2(1/ )rO , (1/ )rO  and (1/ )rO , 

respectively. 

By applying the decomposition [7] to the displacement 

boundary integral relation [3] and then integrating a term 

containing the function ( , )p

mjG ξ x by parts via Stokes’ 

theorem, it finally results in 

 

( ) ( , ) ( ) ( ) ( , ) ( ) ( ) ( )

         ( , ) ( ) ( )

c c

c

p p

p j j ij i j

S S

p

mj m j

S

u U t dA H n u dA

G D u dA

 



   

 

 



x ξ x ξ ξ ξ x ξ ξ ξ

ξ x ξ ξ
 [18] 

 

where ( ) ( ) /m i ism sD n       denotes a surface differential 

operator. The boundary term resulting from the 

integration by part vanishes due to the enforcement of 

the closure condition along the crack front (i.e., 

( ) 0 j cu S   ξ ξ ). It is worth noting that the boundary 

integral relation [18] contains only weakly singular kernels 

of (1/ )rO . The weak singularity of the product  

( , ) ( )p

ij iH nξ x ξ  results directly from the relation [14] and the 

property of the function ( ),p

ijH ξ x  as pointed out before 

by Xiao (1998). Similarly, by applying the decompositions 

[13] and [16] to the boundary integral relation for the 

stress [4] and then integrating the term associated with 

the kernel ( , )tk

mjC ξ x  by parts via Stokes’ theorem, it finally 

leads to 

 

( ) ( , ) ( ) ( ) ( , ) ( ) ( )

           + ( , ) ( ) ( )

c c

c

tk j

lk lrt mj m j tk j

r S S

j

lk j

S

C D u dA G t dA
x

H t dA

 
 



   
    

   



 



x ξ x ξ ξ x ξ ξ ξ

x ξ ξ ξ

[19] 

 

where the closure condition has been enforced again and 

the contribution of the Dirac-delta distributions disappear 

at any interior point x . A pair of singularity-reduced 

boundary integral relations [18] and [19] forms the basis 

for the post-process of the displacement and stress at 

any interior point x  once the unknown jump in the crack-

face displacement (i.e., ju ) is fully determined. 

 

3.4 Weakly singular, weak-form integral equations for 

equivalent cracked half-space 

 

By properly forming the limit cS x y  of the regularized 

boundary integral relation [18], it yields the boundary 

integral equation for the sum of the crack-face 

displacement as 

 

( ) ( ) ( , ) ( ) ( ) ( , ) ( ) ( )

( , ) ( ) ( ) ( )

c c

c

p p

p j j mj m j

S S

p

ij i j

S

c u U t dA G D u dA

H n u dA

 





    

 

 



y y ξ y ξ ξ ξ y ξ ξ

ξ y ξ ξ ξ
 [20] 

 

where ( ) ( ) ( )p p pu u u   y y y  denotes the sum of the 

crack-face displacement and the function ( )c c y  is 

defined such that 0 ( ) 1c y  and ( ) 1/2c y  if the surface is 

sufficiently smooth at y . By multiplying [20] by a 

sufficiently smooth test function ( )pt y  and then 

integrating the result over cS  , it leads to a weakly-

singular, weak-form boundary integral equation for the 

sum of the crack-face displacement: 

 

1
( ) ( ) ( ) ( ) ( , ) ( ) ( ) ( )

2

                                  ( ) ( , ) ( ) ( ) ( )

                                  ( ) ( , ) ( )

c c c

c c

c

p

p p p j j

S S S

p

p mj m j

S S

p

p ij i

S

t u dA t U t dA dA

t G D u dA dA

t H n u

  

 





  

 

 

  

 



y y y y ξ y ξ ξ y

y ξ y ξ ξ y

y ξ y ξ ( ) ( ) ( )

c

j

S

dA dA


 ξ ξ y

 [21] 

 

It is important to emphasize that the function ( )c c y  

simply reduces to 1/2 since the crack surface is assumed 
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piecewise smooth (i.e., a set of points y  whose unit 

normal vector is not well-defined is of measure zero). 

Clearly, the weak-form boundary integral equation [21] 

contains only weakly singular kernels of (1/ )rO . 

To establish the weakly singular, weak-form boundary 

integral equation for the crack-face traction, we first form 

the product ( ) ( )l lkn  y x , cSy  using the boundary 

integral relation [19] and then take the limit x y . This 

process yields the following singularity-reduced boundary 

integral equation for the crack-face traction 

 

( ) ( ) ( , ) ( ) ( ) ( , ) ( ) ( )

                   ( ) ( , ) ( ) ( )

c c

c

tk j

k t mj m j tk j

S S

j

l lk j

S

t D C D u dA G t dA

n H t dA


 





  
     

  

 

 



y y ξ y ξ ξ y ξ ξ ξ

y y ξ ξ ξ

 [22] 

 

where ( ) ( ) ( )k k kt t t   y y y  denotes the jump in the 

crack-face traction and ( )  y  is defined such that 

0 ( ) 1 y  and ( ) 1/2 y  if the surface is sufficiently 

smooth at y . By multiplying the boundary integral 

equation [22] by a sufficiently smooth test function ( )ku y , 

integrating the result over the crack surface cS  , then 

performing an integration by parts via Stokes’ theorem of 

integrals containing the kernels ( , )tk

mjC ξ x  and ( , )j

tkG y ξ , 

and finally choosing the test function ( )ku y  to satisfy the 

closure condition along the crack front (i.e., 

( ) 0 k cu S  y y ), it gives rise to 

 

1
( ) ( ) ( ) ( ) ( , ) ( ) ( ) ( ) ( )

2

                                   ( ) ( , ) ( ) ( ) ( )

                                   ( ) (

c c c

c c

c

j

k k k lk l j

S S S

j

t k tk j

S S

tk

t k mj

S

u t dA u H n t dA dA

D u G t dA dA

D u C

  

 



  

 



  

 



y y y y y ξ y ξ ξ y

y y ξ ξ ξ y

y , ) ( ) ( ) ( )

c

m j

S

D u dA dA


 ξ y ξ ξ y

 [23] 

 

Again, from the piecewise smoothness of the crack 

surface, the function ( )  y  simply reduces to 1/2. It is 

also important to point out that the weak-form, traction 

boundary integral equation [23] contains only weakly 

singular kernels of (1/ )rO . 

 

4. Solution methodology 

 

A pair of weakly singular, weak-form boundary integral 

equations [21] and [23] provides the essential basis for 

the formulation of the boundary value problem of the 

equivalent cracked half-space shown in Fig. 1(b). The 

final governing equations contain only unknowns on the 

crack surface including the sum of the crack-face 

displacement pu  and the jump in the crack-face 

displacement pu . It is apparent that the weakly-singular, 

weak-form traction boundary integral equation [23] 

contains the complete information of the prescribed 

crack-face tractions (i.e., it  and it ) and is independent 

of the unknown pu . The solution of the jump in the 

crack-face displacement pu  can be, therefore, 

determined by solving this weak-form equation. Once the 

data pu is fully obtained, it is then employed together 

with the weak-form integral equation [21] to solve for the 

unknown sum of the crack-face displacement pu . 

In the present study, a symmetric Galerkin boundary 

element method (SGBEM) is adopted to construct the 

numerical solution of the weak-form equation [23] (also 

see the work of Rungamornrat and Mear (2008b), Li et al. 

(1998), Frangi et al. (2002)). Due to the weakly singular 

nature of all involved integrals, continuous finite element 

basis functions are employed everywhere in the 

approximation; in particular, 6-node, 8-node, and 9-node 

quadratic elements are employed in the discretization of 

the crack surface. To further enhance the accuracy of the 

approximation, special 9-node crack-tip elements 

proposed by Rungamornrat and Mear (2008b) and Li et 

al. (1998) are adopted to discretize the jump in the crack-

face displacement in a region adjacent to the crack front. 

Such special crack-tip elements possess two positive 

features including their shape functions properly enriched 

by a square-root function and extra degrees of freedom 

introduced along the crack front to represent the gradient 

of the jump in the crack-face displacement. The former 

feature allows the near-front solution to be captured 

accurately using relatively coarse meshes whereas the 

latter renders the stress intensity factors to be extracted 

directly from those extra degrees of freedom without 

carrying the extrapolation. To form a system of linear 

algebraic equations resulting from the discretization, two 

essential tasks are accomplished with a special care. 

One is associated with the numerical evaluation of 

regular, weakly singular and nearly singular integrals over 

elements or pairs of elements resulting from the 

discretization procedure. The regular integrals including 

both single surface and double surface integrals over 

pairs of remote elements are integrated efficiently and 

accurately by standard Gaussian quadrature. For the last 

two types of integrals, the weak singularity and rapid 

variation of integrands induced when pairs of coincident 

or adjacent elements are involved renders the integrals 

very difficult to be evaluated by standard Gaussian 

quadrature (e.g., Xiao, 1998). In the present study, an 

integrand-regularization technique similar to that 

proposed by Xiao (1998) is employed to efficiently 

integrate those double surface integrals. Specifically, a 

family of variable transformations such as triangular-polar 

transformation and logarithmic transformations is applied 

to either remove the weak singularity or alleviate the fast 

variation of the integrand before they are integrated by 

standard Gaussian quadrature. The other important task 

corresponds directly to the evaluation of all involved 
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kernels ( , )p

ijH ξ x ,  ( , )p

mjG ξ x  and ( , )tk

mjC ξ x  for every pair of 

points ( , )ξ x  resulting from the numerical quadrature. It is 

evident from the relations [14], [15] and [17] that such 

task only requires calculations of the kernels ( ),p

ijH ξ x  

( )p

mjG ξ x  and ( )tk

mjC ξ x  for the uncracked whole space. 

Since ( ),p

ijH ξ x  is independent of material property and 

involves only elementary functions, its evaluation can be 

readily achieved via the direct substitution. On the 

contrary, the kernels ( )p

mjG ξ x  and ( )tk

mjC ξ x  are material 

dependent and the direct evaluation by performing all 

involved contour integrals for every pair of points ( , )ξ x  is 

computationally expensive. To avoid such massive 

calculations, an interpolation scheme similar to that used 

by Rungamornrat and Mear (2008b) is adopted. In this 

technique, the kernels ( )p

mjG ξ x  and ( )tk

mjC ξ x  given by 

[10] and [11] are first rewritten as a product of two parts: 

 

2
( ) ( , )

8

mqa qjklp al

mj kp

E
G I

r


 


  ξ x                       [24] 

2
( ) ( , )

8

kjap
tk slmtsl
mj ap

A
C I

r
 


  ξ x       [25] 

 

where || ||,  [0,2 ],  [0, ]r       ξ x  denote spherical 

coordinates of point ξ  with the origin at point x  and the 

angular dependent function ( , )kl

ijI    is defined by  

 
1

0

( , ) ( , ) ( )kl

ij ij k lI z z ds  

 

 
z r

z z z                        [26] 

 

It is evident that the first part of both kernels involves 

mainly elementary functions and can, therefore, be 

calculated efficiently via the direct substitution. For the 

second part, the function ( , )kl

ijI    is approximated over a 

domain [0,2 ] [0, ]   using finite element interpolations. 

In such procedure, the direct evaluation of the line 

integral [26] is only required at nodal points and it can be 

achieved efficiently via Gaussian quadrature. The 

accuracy of the approximation can be readily controlled 

and enhanced by refining the interpolation grid. The final, 

symmetric, dense system of linear algebraic equations is 

then solved by a selected efficient indirect linear solver 

such as a preconditioning conjugate gradient method.   

To determine the sum of the crack-face displacement 

pu , the weak-form boundary integral equation [21] is 

subsequently solved by a standard Galerkin technique. 

Note that once the jump in the crack-face displacement 

pu  is obtained, all double surface integrals appearing 

on the right hand side of [21] serve only as the prescribed 

data and the single surface integral containing the 

unknown pu  is relatively simple. Due to the regularity 

behavior of pu  over the entire crack surface, standard 

two-dimensional isoparametric elements are adopted 

everywhere in the discretization of trial and test functions. 

Essential ingredients described above also apply to treat 

all involved single surface and double surface integrals 

and the calculations of all kernels. The resulting, 

symmetric, sparse system of linear algebraic equations is 

then efficiently solved by the same indirect linear solver. 

 

 

5. Post-process 

 

Once the unknown crack-face data { , }p pu u  are obtained, 

other related quantities such as the displacements and 

stresses at any point within the cracked medium and the 

stress intensity factors and T-stress components along 

the crack front can be determined. The former can be 

readily computed using the singularity-reduced boundary 

integral relations [18] and [19] whereas the post-process 

of the latter from the local stress field in the neighborhood 

of the crack front still requires non-trivial treatment of 

nearly singular integrals and limiting procedure. To avoid 

difficulties posed in such task, the solved crack-face 

displacement data (i.e., pu  and pu ) is utilized, instead, 

to extract the stress intensity factors and the T-stress 

components. Such procedure is briefly summarized as 

follows (see also the work of Rungamornrat and Mear 

(2008b), Li et al. (1998), Pham (2015) and Rungamornrat 

et al. (2018)). 

Let cx  be a point on the crack front and  1 2 3{ ; , , }c x x xx  

be a local Cartesian coordinate system with the origin at 

cx  and the orthonormal base vectors 1 2 3{ , , }e e e . In 

particular, 1 2 3{ , , }e e e  are chosen such that 3e  is tangent 

to the crack front at cx ; 2e  is normal to the crack surface 

cS 
 at cx  and 22

 e n ; and 1 2 3 e e e  is normal to the 

crack front and directs inside the medium as clearly 

indicated in Fig. 3. By using the property of special crack-

tip elements, Li et al. (1998) and Rungamornrat ant Mear 

(2008b) proposed an explicit formula for determining the 

mixed-mode stress intensity factors ( , , )I II IIIK K K  in terms 

of the extra nodal degrees of freedom placed along the 

crack front as 

 

 
 

Fig. 3. Local Cartesian coordinate system and all involved 

parameters for determining stress intensity factors and T-

stress components. 
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ˆ( ) ( )
2

i c ij c jk B



   x u x e    [27] 

 

where 
1 IIk K , 

2 Ik K , 
3 IIIk K ;  

 

1 ( , 1)c
cξ




   



r
e ,  [28] 

9
( ) ( )

1

( , )i i

c c

i

  


 r x x ,  [29] 

( ) ( )ˆ( ) ( , 1)i i

c c

i

   u x u ;  [30] 

( )i
x  is the  thi node of the crack-tip element; 

( , ) [ 1,1] [ 1,1]       are master coordinates of any point 

within the crack-tip element and ( , 1)c   are master 

coordinates of the point cx ; ( ) ( , )i    is a standard 

quadratic shape function of the  thi  node defined on a 9-

node master element; ( )iu  represents the extra degree 

of freedom of the  thi  node of the crack-tip element along 

the crack front; and ijB  is given by  

 
2

1

0

1
[( ) ( ) ( ) ( ) ]

2
ij ij im mn njB d






  , , , ,a a a b b b b a  [31] 

 

with a  and b  denoting orthonormal vectors in the plane 

3 0x   and   denoting the angle between a  and the unit 

vector  1e  as indicated in Fig. 3. It is worth noting that the 

summation in [30] is taken only over nodes of the crack-

tip element located along the crack front.  

The T-stress components along the boundary of the 

crack can be also obtained directly from the sum of the 

crack-face displacement as described below. First, the 

finite part of the stress tensor at the point cx  along the 

crack front, with ( )ij cT x  denoting its local components, is 

related to the finite part of the strain tensor at the same 

point, with ( )kl c x  denoting its local components, by 

 

( ) ( ) ( )ij c ijkl c kl cT E x x x  [32] 

 

where ( )ijkl cE x  are local components of the elastic moduli 

at cx . From the continuity of the finite part of the stress 

at cx , three local components 12T , 22T , and 23T  are, 

therefore, known a priori and can be obtained from the 

prescribed crack-face traction at cx . In addition, three in-

plane components of ( )kl c x  at cx  can be computed 

from the solved sum of the crack-face displacement as 

 

1 3
11 33

1 3

1 3
13

3 1

( ) ( )1 1
( ) ; ( ) ;

2 2

( ) ( )1 1
( )

4 4

c c
c c

c c
c

u u

x x

u u

x x

 



 
 

 

 
 

 

x x
x x

x x
x

  [33] 

 

The derivatives involved in the expressions [33] can be 

carried out directly within elements along the crack front. 

From the prescribed information of 12T , 22T , and 23T  and 

the computed components 11 , 13  and 33 , the unknown 

components 11T , 13T , and 33T  at any point cx  along the 

crack front, commonly termed the T-stress components, 

can be obtained by solving a system of six independent 

linear algebraic equations [32]. 

 

 

6. Numerical results 

 

In this section, the boundary integral formulation and the 

implemented solution procedure for a cracked whole 

space possessing a plane of symmetry is fully tested. 

Three different boundary value problems are considered 

to demonstrate the computational performance and 

robustness of the proposed technique. In numerical 

simulations, two representative, linearly elastic materials, 

one for isotropic and the other for transversely isotropic 

solids, with elastic constants shown in Table 1 are 

employed. For the transversely isotropic material, the 

axis of material symmetry is taken to direct normal to the 

plane of symmetry, i.e., the 1 2x x  plane. Special 9-node 

crack-tip elements are used to discretize the region 

adjacent to the crack front whereas standard 8-node 

quadrilateral elements and 6-node triangular elements 

are adopted to discretize the majority of the crack surface. 

 

6.1 Pair of identical horizontal penny-shaped cracks 

 

Consider, first, a pair of identical horizontal penny-shaped 

cracks embedded in a whole space and the distance 

from their surfaces to the symmetric plane is h  as shown 

in Fig. 4(a). The crack radius is denoted by a  and the 

lower crack front is parameterized by 
1 cos ,x a    

2 3sin ,x a x h    for [0,2 ]  . The equivalent cracked 

half-space under the symmetric boundary conditions is 

indicated in Fig. 4(b) and each crack is subjected to a 

uniform traction 1 1 0,t t       2 2 0,t t     3 3 0,t t       

(see Fig. 4(c)). In the analysis, four meshes are adopted 

as indicated in Fig. 4(d) and the normalized depth 

/ 0.5h a   is considered. 

Computed stress intensity factors and T-stress 

components at 0 00 ,90   and 0180  are normalized by the 

 

Table 1. Elastic constants for isotropic material (associated with 

Poisson’s ratio 0.3  and 2.6 GPaE  ) and transversely 

isotropic material with the axis of material symmetry normal to 

half-space surface.  
 

Materials 
Elastic constants (GPa) 

E1111 E1122 E1133 E2222 E1313 

Isotropic 3.500 1.500 1.500 3.500 1.000 

Transversely 
isotropic 

16.090 3.350 5.010 6.100 3.830 
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reference solution and then reported in Tables 2 and 3. It 

is remarked that the reference results are taken as the 

solution of a cracked whole space shown in Fig. 4(a) 

without exploiting the symmetry by the SGBEM proposed 

by Rungamornrat and Mear (2008b) with use of the Mesh 

4. As can be seen from results in Table 2, numerical 

 

 
Fig. 4. Schematics of (a) pair of identical, horizontal penny-shaped cracks in whole space, (b) equivalent cracked half-space, (c) 

tractions acting on crack surfaces, and (d) four meshes used in analysis.  

 

 

Table 2. Normalized stress intensity factors at 
00  , 

090 and 
0180 for lower penny-shaped crack shown in Fig. 4(a) with 

/ 0.5h a  . 

β Mesh Isotropic  Transversely isotropic 

  / ref

I IK K  / ref

II IIK K  / ref

III IIIK K   / ref

I IK K  / ref

II IIK K  / ref

III IIIK K  

0
0 

1 0.9949 0.9896 -  0.9928 0.9907 - 

 2 1.0004 1.0001 -  1.0000 1.0004 - 

 3 1.0003 1.0002 -  1.0002 1.0004 - 

         
90

0 
1 0.9935 1.0011 0.9817  0.9927 0.9903 0.9835 

 2 1.0002 1.0016 0.9990  1.0000 1.0000 0.9994 

 3 1.0003 1.0004 1.0000  1.0002 1.0000 1.0002 

         
180

0 
1 0.9916 0.9911 -  0.9927 0.9907 - 

 2 1.0000 1.0003 -  1.0000 1.0003 - 

 3 1.0002 1.0002 -  1.0002 1.0003 - 

 

 

Table 3. Normalized T-stress components at 
00  , 

090 and 
0180 for lower penny-shaped crack shown in Fig. 4(a) with 

/ 0.5h a  . 

β Mesh Isotropic  Transversely isotropic 

  
11 11/ refT T  

33 33/ refT T  
13 13/ refT T   

11 11/ refT T  
33 33/ refT T  

13 13/ refT T  

0
0 

1 1.0359 1.0252 -  1.0184 1.0055 - 

 2 1.0186 1.0166 -  1.0075 1.0057 - 

 3 1.0055 1.0049 -  1.0023 1.0017 - 

         
90

0 
1 1.0037 0.9988 0.9626  1.0063 0.9969 1.0787 

 2 1.0042 1.0013 1.1549  1.0034 0.9995 1.0825 

 3 1.0021 1.0008 1.0662  1.0015 0.9999 1.0297 

         
180

0 
1 0.9658 0.9603 -  0.9930 0.9868 - 

 2 0.9873 0.9790 -  0.9989 0.9921 - 

 3 0.9980 0.9947 -  1.0006 0.9977 - 
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solutions exhibit excellent agreement with the reference 

solutions for the first three meshes and they are weakly 

dependent on the level of mesh refinement. In particular, 

the discrepancy between the stress intensity factors 

generated by the coarsest and intermediate meshes and 

the reference solutions is less than 1.9% and 0.2% for 

the isotropic case and 1.7% and 0.1% for the 

transversely isotropic case, respectively, whereas results 

obtained from the Mesh 3 are nearly identical to the 

reference solution. The high quality of the numerical 

solutions, while employing relatively coarse meshes, is 

the direct consequence of the use of special crack-tip 

elements to enhance the near-front approximation of the 

relative crack-face displacement. 

Similar convergence behavior can be also observed 

for results of the T-stress components shown in Table 3; 

however, it is apparent that the difference between the 

computed solutions 13T  from the Mesh 1 and Mesh 2 and 

the reference solution is larger than the case of the stress 

intensity factors. The reduction in the accuracy results 

directly from the fact that the derivatives of the sum of the 

crack-face displacement are required in the calculation of 

the T-stress components. 

 

6.2 Pair of identical vertical penny-shaped cracks 

 

Consider, next, a pair of identical, vertical penny-shaped 

cracks of radius a  embedded in a whole space with a 

depth h  (measured from the center of each crack to the 

plane of symmetry) as illustrated in Fig. 5(a). The lower 

crack front is parameterized by 1 0,x 
2 sin ,x a   

3 cosx h a    for [0,2 ]  . The equivalent cracked 

half-space subjected to symmetric boundary conditions is 

shown in Fig. 5(b) and each crack is subjected to the 

uniformly distributed, self-equilibrated, normal tractions 

1 1 0,t t      2 2 0,t t     
3 3 0t t     (see Fig. 5(c)). It 

is apparent from the symmetry of the crack-face loading 

about the plane 1 0x   that the mode-II and mode-III 

stress intensity factors identically vanish along the crack 

front. In the numerical study, four meshes of the penny-

shaped crack are adopted as illustrated in Fig. 5(d) and 

the aspect ratio with / 1.25h a   is considered. 

The computed mode-I stress intensity factor and T-

stress components for both isotropic and transversely 

isotropic materials are normalized by the reference 

solution (taken from the converged SGBEM solution of a 

cracked whole space shown in Fig. 5(a) without 

exploiting the symmetry) and then reported in Figs. 6 and 

7. As can be seen from results in Fig. 6, the computed 

mode-I stress intensity factor shows very good 

agreement with the reference solution for all three 

meshes and both types of materials. Similarly, numerical 

solutions for the T-stress components shown in Fig. 7 for 

both materials also indicate the good convergence 

behavior and the weak dependence on the level of mesh 

refinement. Evidently, results generated by the coarsest 

mesh, intermediate mesh and finest mesh are nearly 

indistinguishable from the benchmark solution. The high 

quality of the numerical solutions results directly, again, 

from the use of special crack-tip elements to capture the 

near-front relative crack-face displacement. 

 

6.3 Vertical penny-shaped crack under non-uniform 

tractions 

 

Consider, as a final example, a circular crack of radius a  

 

 
Fig. 5. Schematics of (a) pair of identical, vertical penny-shaped cracks in whole space, (b) equivalent cracked half-space, (c) 

tractions acting on crack surfaces, and (d) four meshes used in analysis.  
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embedded in a whole space and oriented perpendicular 

to the plane of symmetry, i.e., the plane 3 0x  , as shown 

schematically in Fig. 8(a). The equivalent cracked half-

space under the symmetric boundary conditions used in 

the analysis is also illustrated in Fig. 8(b). The 

corresponding semi-circular crack front is parameterized 

by 
1 cos ,x a    2 0,x   3 sinx a   for [0,2 ]  . To 

demonstrate the capability of the proposed technique to 

treat general loading conditions, three types of symmetric, 

self-equilibrated, crack-face tractions including the non-

uniform normal traction 2

1 3 2 0 30, ( / )t t t x a      , the non-

uniform horizontal shear traction 2

2 3 1 0 30, ( / )t t t x a     , 

and the non-uniform vertical shear traction 
1 2 0,t t      

2

3 0 3( / )t x a   are treated (as indicated in Fig. 9). Three 

meshes as indicated in Fig. 8(c) are adopted in the 

analysis and the reference solution associated with the 

cracked whole-space shown in Fig. 8(a) without using the 

symmetry is obtained via the weakly singular SGBEM 

(Rungamornrat and Mear, 2008b). 

For the first loading condition (see Fig. 9(a)), the 

mode-II and mode-III stress intensity factors vanish 

whereas the mode-I stress intensity factor and all T-

stress components vary along the crack front. The 

computed mode-I stress intensity factor and T-stress 

components are reported in Figs. 10 and 11, respectively, 

for both isotropic and transversely isotropic materials. In 
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Fig. 6. Normalized mode-I stress intensity factors of lower penny-shaped crack under uniform normal traction for (a) isotropic case and 

(b) transversely isotropic case. 
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Fig. 7. Normalized T-stress components of lower penny-shaped crack under uniform normal traction for (a) isotropic case and (b) 

transversely isotropic case. 
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addition to the good agreement between the computed 

results and the reference solution and the weak 

dependence on the level of discretization, it can be also 

seen that the influence of the material anisotropy on the 

value and distribution of the mode-I stress intensity factor 

and all T-stress components along the crack front is not 

significant. For the second and third loading conditions, 

the applied shear traction in either 1x  direction or 

3x  direction yields zero mode-I stress intensity factor 

and all zero T-stress components along the entire crack 

front. Computed mode-II and mode-III stress intensity 

factors of such shear loading conditions are reported in 

Figs. 12 and 13 for all three meshes and both materials 

together with the reference solution. Similar to the 

previous case, this set of results indicates that the 

proposed technique with use of special crack-tip 

elements yields highly accurate stress intensity factors 

comparable to the reference solution for all meshes 

employed. In addition, use of the symmetry or the 

equivalent cracked half-space in the analysis can 

significantly reduce the number of degrees of freedom in 

comparison with the treatment of the whole cracked 

space. In particular, a semi-circular crack is discretized 

instead of the entire penny-shaped crack. 

 

 

7. Conclusions and remarks 

 

A set of singularity-reduced integral representations has 

been established for the analysis of cracks in an 

anisotropic, linearly elastic, whole space possessing a 

plane of symmetry. The systematic regularization 

procedure based on the derivative transferring technique 

via the integration by parts and Stokes’ theorem has 

been utilized along with special decompositions of 

strongly singular and hypersingular kernels to derive a 

pair of weakly singular, weak-form boundary integral 

equations governing the unknown crack-face data for the 

equivalent cracked half-spaces. Another key feature of 

the developed integral equations, in addition to the 

 

 
Fig. 8. Schematics of (a) vertical penny-shaped crack in elastic whole space, (b) equivalent cracked half-space, and (c) three meshes 

used in analysis.  

 

 

 
 

(a) 

 
 

(b) 

 
 

(c) 

Fig. 9. Schematics of crack under (a) non-uniform normal traction 
2

2 2 0 3( / )t t x a    , (b) non-uniform horizontal shear traction 
2

1 1 0 3( / )t t x a   , and (c) non-uniform vertical shear traction 
2

3 3 0 3( / )t t x a   .  
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weakly singular nature, is the automatic treatment of the 

existing symmetry via the use of fundamental solutions of 

the half-space under symmetric boundary conditions on 

the free surface. This therefore avoids the discretization 

of the free surface in the solution procedure. 

The weakly singular symmetric Galerkin boundary 

element method (SGBEM) and standard Galerkin finite 

element technique have been successfully implemented 

to solve a pair of weakly-singular, weak-form traction 

boundary integral equations for the sum of and the jump 

in the crack-face displacement. Special crack-tip 

elements have been also employed in the solution 

discretization to enhance the approximation of the near-

front relative crack-face displacement. Essential fracture 

data along the crack front such as the stress intensity 

factors and the T-stress components has been directly 

post-processed from the solved data of the crack-face 

displacements using the explicit formula. Results from 

extensive numerical experiments and the comparison 

with several benchmarked cases have revealed that the 

proposed numerical procedure is highly accurate and 

computationally robust for the analysis of a cracked half-

space under the symmetric boundary conditions. Use of 

the special crack-tip elements along the crack front has 

indicated that the stress intensity factors can be 

accurately captured using relatively very coarse meshes 
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Fig. 10. Normalized mode-I stress intensity factor for vertical crack in whole space subjected to self-equilibrated, non-uniform 

normal traction 1 3
0,t t

 
   2

2

0 3( / )t x a
   for (a) isotropic material and (b) transversely isotropic material. 
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Fig. 11. Normalized T-stress components for vertical crack in whole space subjected to self-equilibrated, non-uniform normal 

traction 1 3
0,t t

 
   2

2

0 3( / )t x a
   for (a) isotropic material and (b) transversely isotropic material. 
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and this therefore renders the technique more suitable for 

linear fracture analysis than the standard finite element 

method which generally requires sufficiently fine meshes 

to capture the near-front field and experiences difficulty in 

the treatment of an unbounded domain. While the 

proposed technique has been successfully implemented, 

it is still restricted to either a cracked whole-space 

possessing the plane of symmetry or a cracked half-

space under symmetric boundary conditions. The 

potential extension of the current work to treat other 

types of boundary conditions such as the anti-symmetric, 

traction-free and rigid boundary conditions and other 

types of materials such as multi-field and smart solids is 

considered essential. It is important to emphasize that 

besides the reduction of the computational cost directly 

gained from using the equivalent half-space model 

instead of the full treatment of a cracked whole space 

under a symmetric condition, the key ingredients and 

results established in the present study also form the 

useful and essential basis for further nontrivial 

generalization.  
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Fig. 12. Normalized mode-II and mode-III stress intensity factors for vertical crack in whole space subjected to self-equilibrated, 

non-uniform shear traction 
2

2 3 1 0 30, ( / )t t t x a      for (a) isotropic material and (b) transversely isotropic material. 
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Fig. 13. Normalized mode-II and mode-III stress intensity factors for vertical crack in whole space subjected to self-equilibrated, 

non-uniform shear traction 
2

1 2 3 0 30, ( / )t t t x a      for (a) isotropic material and (b) transversely isotropic material. 
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Symbols and abbreviations 

 

a  Crack radius 

BIEM Boundary integral equation method 

,a b  Orthonormal vectors 

,tk p

mj mjC G  Weakly singular kernels for whole space 

,tk p

mj mjC G  Weakly singular kernels for whole space under 

symmetric conditions 

( )mD   Surface differential operator 

ijklE  Global components of elastic moduli 

ijklE  Local components of elastic moduli 

1 2 3, ,e e e  Orthonormal base vectors of global Cartesian 

coordinate system  
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1 2 3, ,e e e  Orthonormal base vectors of local Cartesian 

coordinate system 

FEM Finite element method 
p

mjH  Singular function of 2(1/ )rO  
p

mjH  Singular function of 2(1/ )rO  

, ,I II IIIK K K  Mode-I, Mode-II, Mode-III stress intensity 

factors 

, n n  Outward unit normal vectors to crack surfaces 

1 2 3{ ; , , }x x xO  Global Cartesian coordinate system 

r  Distance between source and field points 

,c cS S 
 Geometrically identical crack surfaces 

p

ijS  Stress fundamental solution for whole space 

ijT
 

T-stress tensor  

,j jt t 
  Tractions applied to crack surfaces 

,p pt u  Test functions 
p

jU  Displacement fundamental solution for whole 

space 

u  Displacement field 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x  Source point 

1 2 3{ ; , , }c x x xx  Local Cartesian coordinate system at cx  

x  Image point of source point x  

z  Unit vector 

( ) ξ x  Dirac-delta distribution centered at x  

ij  Standard Kronecker-delta symbol 

ij
 

Modified Kronecker-delta symbol 

ijk
 

Standard alternating symbol
  

ij
 

Local components of finite part of strain tensor
 

( , )ξ 
 

Master coordinates of point within the crack-tip 

element
 

ξ
 

Field point
  

ξ
 

Image point of field point ξ
  


 

Stress field 
lk

ij
 

Hyper singular kernel of whole space 
 


 

Cracked whole space under symmetric 

condition
 

 


