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 Despite the impact of temperature and precipitation patterns on 

river flows is an emerging issue in hydrology, few studies have 

been concentrated on the correlation between the hydrological 

components and climate indices. This study mainly focuses on 

the projected extreme climate indices and the effects of climate 

change projections on the hydrological process in the Bago 

River Basin, Myanmar. It has been noted that the mean monthly 

maximum temperature values are expected to rise throughout 

the entire basin under the RCP 4.5 scenario. On the other hand, 

the annual total precipitation index is anticipated to increase. 

The findings imply that the groundwater and surface flow will 

eventually expand as a result of the effects of extreme 

precipitation indices. Subsequently, there will be a decrease in 

the lateral flow. Furthermore, it is observed that the effect of 

temperature indices will cause a significant impact on 

evapotranspiration. This paper highlights that the crucial part of 

the extreme climate indices that influence the regional 

hydrological processes of the Bago River Basin in the upcoming 

decades. 
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1. Introduction 

 

Floods and drought are undeniable subsequences of 

climate change effect. Likewise, it influences the water 

balance of the hydrological cycle. Therefore, it is 

essential to comprehend how climate change projections 

will affect the hydrological process. In order to generate 

the climate projections, the General Circulation Models, 

also known as global climate models (GCMs) are vital 

role to predict under different emission scenarios (Mishra 

et al., 2020; Aguayo et al., 2021). The GCMs are 

mathematical models and contain many different earth 

systems, including the atmosphere, oceans, land surface, 

etc. They can assist to provide the prospective outcomes 

for study on climate change and variability. They are 

typically available with spatial resolutions of 2˚ and 4˚, 

and are subject to uncertainty originating from multiple 

sources (Singh et al., 2019). Their accuracies decline at 

finer spatial scales, and some of their observations are 

very inaccurate when applied to a small scale (Singh et 

al., 2016; Chen et al., 2012). Regarding to the regional 

and practical applications, (Raju et al., 2020) highlighted 

that GCMs have some uncertainties to predict for the 

future projections of water resources. Additionally, when 

applying GCMs to function together with hydrological 

implications on climate change, the simulated outputs are 
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not well agreed with the observed ones (Kundzewicz et 

al., 2022). 

Moreover, climate indices are the parameters to track 

changes in the frequency of extreme weather events. 

The Expert Team on Climate Change Detection Indices 

(ETCCDI) of the Commission for Climatology, the World 

Climate Research Program, and the Technical 

Commission for Oceanography and Marine Meteorology 

(CCI /WCRP/JCOMM) created the total 27 indices based 

on the consideration of daily temperature values or daily 

precipitation quantities (Zhang et al., 2005; Pesce et al., 

2022). In the “climate literature”, ETCCDI indices are 

frequently employed to evaluate statistics of temperature 

and precipitation extremes, and it can be used to 

examine a range of extreme phenomena, including heavy 

rain, floods, droughts, heat waves, etc. In particular, it 

may be essential for identifying future changes by 

applying projections from climate models to investigate 

the climatic impact (Sardella et al., 2020).  

Due to the effects of climate change, the Bago River 

Basin has recently experienced numerous floods and 

droughts (Hlaing et al., 2008). The water supplies from 

this river basin are essential to the regular farming and 

fishing operations of the local residents. Approximately, a 

third of the local residents utilize the agricultural area of 

over 890 km2 annually. Typically, in summer and rainy 

seasons, water shortage and flooding are common 

problems during cultivation and harvesting (Htut et al., 

2015).  

In order to overcome this frequent issue, it is still 

necessary to examine the climatic data in all aspects so 

that it can predict the hydrological process in more detail. 

Many previous studies (Htut et al., 2014; Shrestha et al., 

2016; Shreshta et al., 2014 and 2017; Myo et al., 2020) 

have been used to assess the impact of climate change 

using precipitation and temperature variables under 

different scenarios and demonstrated streamflow 

changes for past and future periods in the Bago River 

Basin, Myanmar. Furthermore, there have been few 

studies to investigate the long-term changes in climate 

patterns and extreme climate parameters utilizing 

ETCCDI extreme climatic indices over time in Myanmar 

(Kyu et al., 2016; Sein et al., 2018; and Kyaw et al., 

2022). However, it is critical to consider more extreme 

climate indices that are strongly correlated with climate 

variables and water balance components in the 

hydrological process in a specific region. Therefore, this 

study examined the probable future extreme climate 

trends and variability of water balance components using 

each extreme climatic indicator in the Bago River Basin, 

Myanmar. 

 

 

2. Study area and datasets 

 

2.1 Study Area  

The Bago River Basin is one of the most important 

and useful river basins in lower Myanmar for hydropower 

generation, irrigation, fisheries and navigation purposes. 

According to the government's census, the total 

population of the Bago River Basin in 2010 was 5.327 

million, with a population density of 1,091 people/km2. 

The local populations are mainly composed of 40% for 

farmers and 30% for fishermen. With a total area of 

4,883.1 km2, this river basin covers 91% of the Bago 

district (Shelly et al., 2014). The basin area is located 

between latitudes 16° 42 00 and 18° 30 00 N and 

longitudes 95° 42 00 and 96° 00 00 E (Shelly et al., 2020). 

In this basin, a hydropower dam for electricity and 

irrigation, Zaung Tu Dam, were constructed in 1996. For 

the purpose of flood control during the rainy season and 

the irrigation water use for summer paddy cultivation, 

three earthen dams namely Kodukwe, Salu, Shwelaung 

were construed and opened in May, 2012. The location 

map of the Bago River Basin is shown in Figure 1.  

The effects of climate change became apparent in 

this basin at the beginning of the 21st century. The main 

impacts of climate change in this basin are increased 

surface runoff, land cover change, deforestation, and soil 

erosion (Kawasaki et al., 2017). As a result, the local 

people are becoming increasingly affected to food 

security, water scarcity, and poverty as well. Additionally, 

it is expected that variations in temperature and 

precipitation will have significant effects on the water 

resources. Therefore, this study examines the projections 

of the impact of extreme climate indicators on the 

hydrological cycle in the Bago River Basin, Myanmar. 

 

Legend
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Fig. 1. Location of the Bago River Basin (Shelly et al., 2014). 
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2.2 Hydro-climatic data  

 

2.2.1 Observed Data 

The Bago River Basin has a tropical monsoon climate, 

warm temperatures and distinct wet and dry seasons. 

According to weather databases, in 1997, the average 

annual precipitation occurred the highest amount of 

3,143 mm during the past 30 years (1975-2005) (Shelly 

et al., 2020; Kawasaki et al., 2017). This river basin 

experienced an average annual rainfall of 2,980 mm over 

the baseline period (1981–2000), with 130 rainy days on 

average per year as well. In order to conduct the 

research analysis, temperature and precipitation data at 

the Bago station for the period during 1981 to 2000 were 

obtained from the Department of Meteorology and 

Hydrology in Myanmar. The daily discharge data during 

1981 to 2000 and 2010 to 2014 was provided by this 

department (Department of Meteorology and Hydrology, 

Myanmar). The monthly distribution of precipitation is 

directly related to the southwest monsoon. In recent 

decades, there has been a gradual increase in the 

frequency and magnitude of extreme circumstance. 

When extreme climate change simultaneously occurs, 

both droughts and floods drastically alter livelihoods. 

 

2.2.2 GCMs Data 

The Fifth IPCC Assessment Report (AR5) launched 

CMIP5 in 2013 (Allen et al., 2013). This is the main 

framework for coordinated climate modeling experiments. 

The CMIP5 experimental rules provides four emissions 

scenarios based on the Representative Concentration 

Pathways (RCPs) identified by the amount of net 

radiative forcing on the global climate system at the end 

of the 21st century (IPCC, 2001). There have been 

conducted some studies in recent years to verify the 

selection criteria for GCMs. According to the selection of 

GCMs in the Bago River Basin (Htut et al., 2015; Zwiers 

et al., 2009), the five distinct GCM models under scenario 

RCP 4.5 were taken into consideration for the analysis of 

climate projections in this research (Table 1).  

 

2.3 Climate Indices  

 

There is a growing need for science-based 

information about weather and extreme climates. The 

Joint Expert Team on Climate Change Detection and 

Indicators (ETCCDI) has delineated a core set of extreme 

descriptive indicators to provide a unified perspective on 

observed weather changes and climate extremes (Brown 

et al., 2010; Zhang et al., 2011; Afzal et al., 2015; Pat et 

al., 2018; Aryal et at., 2020; Chapagain et al., 2021; 

Charles et al., 2022). In this research, six climate indices 

and five climate indices based on precipitation and 

maximum and minimum temperatures at specified station 

indicated by ETCCDI are calculated. The minimum and 

maximum temperature values and intensity indices, such 

as SU, TNn, TNx, TXn and TXx were examined. 

Whereas SDII, R95PTOT, R99PTOT, CWD and CDD are 

considered for assessing variations in climatic extremes, 

PRCPTOT is an index used to represent the mean state 

of the climate. The extreme daily precipitation indices, 

R95PTOT and R99PTOT, are determined by using a limit 

that correlates to the precipitation values of the 95% and 

99% percentiles. The process used to calculate each 

climate indices and units are shown in Table 2 (a) and 

Table 2 (b). 

 

2.4 Method of correlation 

 

In order to assess the accuracy, the two types of data 

objects are compared attribute by attribute. The 

correlation score is obtained by adding the squares of the 

Table 1. A list of the climate models used in this research, in 
addition to a summary of each model's resolution, model 
description and each climate change scenario (Coupled 
Model Intercomparison Project Phase 5 (CMIP5)). 
 

Models Model Description 
and Research 

Center 

Resolution 
(Degree) 

Proje
ction 

BCC-
CSM1.1 

Climate System 
Model Version I, 
Bejing Climate 

Center 

12864 
RCP
4.5 

CCSM4 

The community 
Climate System 
Model Version 4, 
National Center 
for Atmospheric 
Research USA  

288192 
RCP
4.5 

CNRM-
CM5 

Centre National de 
Recherches 

Météorologiques 
Climate Model 

version 5, 
CNRM/Center 
Européen de 
Recherche et 

Formation 
Avancée en Calcul 

Scientifique, 
France 

256128 
RCP
4.5 

GISS-E2R 

Goddard Institute 
for Space Studies 
Model E version 2 

with Russell 
Ocean Model,  
GISS, National 

Aeronautics and 
Space 

Administration, 
USA 

14490 
RCP
4.5 

MRI-
CGCM3 

Meteorological 
Research Institute 
Coupled General 
Circulation Model 
Version 3, MRI, 

Japan 

320160 
RCP
4.5 
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magnitude differences between the two attributes. One of 

the most popular correlation methods, Pearson’s 

correlation, produces a value that can vary from -1 to +1. 

A high score (near +1) denotes the great degree of 

similarity between both data (Christensen et al., 2008; 

Teutschbein et at., 2010; Taylor et al., 2012). A Pearson 

score close to 0 would be observed for any uncorrelated 

data. This score closes to 1 would indicate that the two 

data are inversely correlated (i.e., one is decreasing 

when the other is increasing). In order to calculate the 

Pearson’s correlation coefficient was shown in Eq. (1) 

(Lenderink et al., 2007).  
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where r is the Pearson correlation coefficient, x is the 

value in the first set of the data, y is the value in the 

second set of the data, and n is the total number of 

values. 

 

2.5 Bias Correction Procedures 

Correction techniques are required because climate 

models frequently generate distorted representations of 

observed time series (Lenderink et al., 2007; Deser et al., 

2012; Ahmadalipour et al., 2018). The bias correction 

methods employ a transformation technique to modify the 

GCM output. The main concept of corresponding both 

controls and scenario GCM runs is to identify the 

potential biases between the observed and simulated 

climatic variables (Song et al., 2020; Song et al., 2022; 

Yang et al., 2023). In this research, the CMhyd (Climate 

model data for hydrologic modeling) (Rathjens et al., 

2016) was examined to simulate the climatic data 

collected from GCMs. The CMhyd conducts the data 

preparation before bias correction. It is performed to 

ensure that the grid cells of the climate model are 

situated where they are supposed to be significantly 

closer regarding to the gauges. Moreover, the 

performance is evaluated by contrasting the observed 

data and the modelled one. This is followed by combining 

the observed and modelled data periods (Yeboah et al., 

2022; Olsson et at., 2016). In this study, two bias 

correction techniques such as linear-scaling and delta-

change approach method for variations in temperature 

and precipitation were examined. The bias corrections 

have been performed using the CMhyd tool extensively in 

various applications. Figure 2 (Dietzsch et al., 2017) 

illustrates the overall bias correction procedure used in 

this paper. 

 

2.5.1 Linear-scaling approach 

The linear-scaling strategy is operational using the 

monthly correction values based on the variations 

between the observed and simulated values. The GCMs 

from climate models are still needed to be corrected to 

Table 2 (a). Description of climate indices for the variable of 
precipitation 

Variable Indices Description Unit 

 Precipitation 
(Pr) 

PRCPTOT 
Annual Total 

Precipitation in Wet 
Days (mm) 

mm 

SDII 
Simple Precipitation 

Intensity Index 
mm/
day 

R95PTOT 

Annual Total 
Precipitation when 

daily precipitation is 
greater than the 
95th percentile 

mm 

R99PTOT 

Annual Total 
Precipitation when 

daily precipitation is 
greater than the 
99th percentile 

mm 

CDD 

Maximum length of 
dry spell (number of 

consecutive dry 
days) 

day 

CWD 

Maximum length of 
wet spell (number of 

consecutive wet 
days) 

day 

 
Table 2 (b). Description of climate indices for the variable of 
temperature 

Variable Indices Description Unit 

Temperature 
(T) 

SU 
Number of summer 

days (daily maximum 
temperature >25˚C) 

day 

TNx 
Annual maximum 

value of daily 
minimum temperature 

˚C 

TXx 
Annual maximum 

value of daily 
maximum temperature 

˚C 

TXn 
Annual minimum value 

of daily maximum 
temperature 

˚C 

TNn 
Annual minimum value 

of daily minimum 
temperature 

˚C 

 

Observed 

climate data

Simulated historical 

climate data

Simulated future 

climate data

Identify biases/ 

parameterize bias 

correction algorithm

Apply bias correction 

algorithm

Corrected historical 

climate data

Corrected future 

climate data  
 
Fig. 2. Bias correction framework in the CMhyd (Rathjens et 
al., 2016; Dietzsch et al., 2017) 
 

(1) 
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produce simulations that exactly match the observations 

(Christensen et al., 2008; Li et at., 2017; Jose et al., 

2022; Oruc et al., 2022). A factor based on the proportion 

of long-term monthly mean observed and control run data 

is used to adjust precipitation. Based on the difference 

between the long-term monthly mean observed and 

control run data, the temperature is corrected using an 

additive term that presented from Eq. 2 to Eq. 5. 
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where )(dPcontr

  and )(dPscen

  are corrected precipitation data 

during the control period (past period) and scenario 
period (future period), respectively, )(dPcontr

 and )(dPobs
 

are raw and observed precipitation data during the 

control period (past period), respectively, 
m is a monthly 

mean value, )(dTcontr

  and )(dTscen

  are corrected 

temperature data during the control period (past period) 
and scenario period (future period), respectively,  )(dTcontr

 

and )(dTobs
 are raw and observed temperature data 

during the control period (past period), respectively. 

 

2.5.2 Delta-change method 

The delta-change method simulates future changes 

for a perturbation of observable data rather than directly 

employing the simulations of future (Lenderinl et al., 

2007; Jose et al., 2022; Oruc et al., 2022; Linling et al., 

2023). In the future scenario, the observational time 

series is superimposed with the simulated data 

comparing the control and the runs. Generally, the bias 

correction method is calculated from Eq. 6 to Eq. 9. 
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2.6 Trend analysis  

The trend analysis is required to identify and quantify 

the extent of trends in a dataset. Dataset trends can 

either be step trends, where the changes in statistics may 

occur at a certain duration, or monotonic trends, where a 

variable constantly increases or decreases over time (Nie 

et al., 2019; Hirsch et al., 1982). 

The trend in the extreme precipitation and 

temperature indices is examined using the non-

parametric Mann-Kendall (MK) trend test (Kendall et al., 

1975; Benestad et al., 2004). This method is frequently 

applied to detect patterns in the time series of hydro-

meteorological data defined by; 
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where, in the time series of size n, xj and xi, respectively, 

represent the jth and ith terms. The S is obtained in Eq. 

10 as the number of positive differences minus the 

number of negative differences. Therefore, a positive S 

indicates that there is an increasing tendency in the data 

because the most existing data is larger than the 

previous data, whereas a negative S indicates the 

opposite (Eq. 11). For n > 10, the average E, and the 

variance (Var) of S are describe as shown in Eq. 12 and 

Eq. 13. 

 

0)( =SE  

 

Whereas Kendall (Kendall et al., 1975) has already 

demonstrated that S is asymptomatic and regularly 

distributed for time series with n>10, where the mean is 0. 
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where ti is the quantity of data in the ith tied group, and 
where m is the total number of tied groups in the time 
series. The Eq. 14 is used to obtain the normal Z test 
statistic by 
 

2/1)(

1

SVar

S
Z


= . 

The variables used in Eq. 14 are S-1 if S>0, S+1 if S<0, 

and Z is 0 if S=0 (Duhan et al., 2013; Yacoub et al., 2019; 

Feliz et al., 2021). The rising trend is indicated by a 

positive Z value. In different circumstances, it suggests a 

decreasing tendency. The null hypothesis is rejected in 

order to test for either an increasing or a decreasing 

monotonic trend at the p significant level. The magnitude 

of the trend's slope can also be estimated non-

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 

(14) 
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parametrically. Since the significance level (alpha) is 

higher than the calculated p-value (0.05 > 0.0001), this 

denotes a trend that is significantly increasing at a 5% 

level of significance. 

 

3. Setup of simulations 

 

The GCMs are used to evaluate the impacts of 

climatic variability and change. The output of GCMs has 

a coarse spatial resolution, which makes it difficult to use 

them (Benestad et al., 2004). Additionally, as a 

consequence of the GCMs’ description of spatial 

resolution, bias correction is necessary to apply for many 

hydrological applications (Rauscher et al., 2013). The 

statistical transformation is the foundation of bias 

correction methods, which focus on making the 

distribution modeled data more accurately reflect the 

observed climatology. The bias correction techniques for 

the historical temperature and precipitation of five GCMs 

for hydrological application were initially performed.  

Furthermore, it was assessed whether the climatic 

indices that used GCMs performed over the past period 

(1981-2000). The evaluation of spatial correlations is 

determined in accordance with the standards (Gassman 

et al., 2007), which state that correlations of 0.4 or less 

imply very poor model performance, correlations between 

0.4 and 0.6 reflect the fact of acceptable capability, 

correlations between 0.6 and 0.7 clearly show 

satisfactory performance, correlations between 0.7 and 

0.85 appear to suggest great skill, and correlations of 

0.85 or more demonstrate extremely good model 

advancement. According to this standard, the outcomes 

are arranged for the projected changes that the 

distribution of each future period (2040-2059 and 2060-

2079) under the RCP 4.5 and the past period (1981-

2000). In order to simulate the hydrological process, a 

calibrated Soil Water Assessment Tool (SWAT), 

hydrological model was applied as input to five 

statistically bias-corrected GCMs under the historical and 

RCP 4.5 scenario. Figure 3 shows the schematic plan of 

the projected impact of climate on the hydrological 

processes in the Bago River Basin, Myanmar.  

The hydrological river basin model known as SWAT 

can be used to generate a wider range of watershed 

scenarios (Gassman et al., 2007). The physical or 

conceptual models, alongside the corresponding 

variables, are integrated into the model to simulate a 

number of environmental factors in a watershed: (1) 

climatic simulation, including meteorological conditions, 

air, soil, and water temperatures, solar radiation, wind 

speed, rainfall, snowmelt, water droplets, relative 

humidity; (2) simulation of hydrological processes, such 

as estimation of discharge using the widely used SCS 

(Soil Conservation Service) method, evapotranspiration 

by using Penman-Monteith method, actual 

evapotranspiration, and water movement in the 

unsaturated and saturated zone; (3) simulation of 

sediment materials for erosion and discharge; (4) 

simulation of crop growth and cultivation methods and 

practices; and (5) simulation of flowing water and 

pollution in watercourses (Gassman et al., 2007; Silva et 

al., 2015). The river basin is divided into a variety of sub-

basins and then into a number of HRUs (Hydrological 

Response Units) in the SWAT model. The hydrological 

water balance is the first and necessary component for 

each model in SWAT. The water balance accelerates 

every process that actually occurs in the river basin. The 

water balance is calculated in Eq. 15. 

 


=

−−−−+=
n

i

gwseepisurfdayt QQETQRSWSW
1

0 )(  

where SWf is the final soil water content (mm water), SWi 

is the beginning soil water content (mm water), and Rsurf 

is the surface runoff (mm water) on a given day; Pday is 

for precipitation on day i (mm of water), and ETi stands 

for the amount of evapotranspiration on day i. Qseep is the 

quantity of water entering the unsaturated zone of soil on 

day i (mm), and Qgw is for return flow on day i (mm of 

water).  

 

4. Results and discussion 

 

4.1 Evaluation of GCMs   

The bias correction strategy using the linear scaling 

and delta-change approach were explored in contrast to 

the original GCMs output data. Figure 4 (a) shows the 

Taylor diagram for the average monthly precipitation 

using the observed data and two bias-corrected GCMs 

(linear scaling and delta-change approach methods) as 

the reference value for the past period (1981–2000). The 

Pearson's coefficient of precipitation data for GCMs 

(CNRM-CM5, BCC-CSM1.1, MRI-CGCM3, GISS-E2R, 

and CCSM4) using the linear scaling and delta-change-

(15) 

 
 
Fig. 3. Schematic diagram of simulation procedures. 
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approach methods over the past period is 0.85, 0.75, 0.7, 

0.65, 0.65, and 0.85, 0.7, 0.75, 0.7, 0.7, respectively. 

Similar to this, the Taylor diagrams are shown in Figure 4 

(b) and Figure 4 (c) for the mean monthly maximum 

temperature (Tmax) and mean monthly minimum 

temperature (Tmin), respectively. The Pearson's 

coefficient of maximum and minimum temperatures for all 

GCMs is indeed around 0.85 after utilizing two bias 

correction techniques. 

The correlation coefficients demonstrate that the 

delta-change method of bias reduction does not deviate 

significantly from linear scaling method. While bias 

corrections are added, the mean monthly maximum and 

minimum temperatures and precipitation have substantial 

correlation coefficients that are approaching to unity. 

These findings express that the bias correction 

techniques can be utilized effectively for temperature 

variable as well as precipitation variable for the Bago 

River Basin, Myanmar. 

 

4.2 Trend Analysis of Extreme Climate Indices  

 

4.2.1 Precipitation  

The trend analysis was conducted by estimating the 

annual data from the observed and GCMs using the 

precipitation indices. The trend test, a nonparametric MK 

trend, was performed based on extreme index values to 

detect temporal trends and significant levels over the 

past period (1981 to 2000). This analysis ultimately 

assists to identify the effects of climate change on 

extreme climate index trends. Table 3, Table 4 and Table 

5 show the correlation matrices for each climate index 

using the GCM output for past period (1981-2000) and 

future periods (2040-2059 and 2060-2079). The 

observed annual total precipitation climate index 

(RPCPTOT) corresponds to a significantly correlated 

climate index using GCM results over the past period. 

The precipitation intensity (SDII) over the past and future 

periods shows the strongest correlation during the 

extreme rainfall circumstances.  

Figure 5 to Figure 10 display the findings of the 

annual trend analysis of all precipitation indices at the 

Bago station during the past and future periods. There 

were observed the increasing and decreasing trends for 

extreme precipitation climatic indices. The PRCPTOT 

index shows a most positive slope, which indicates an 

increasing trend in future periods (Figure 5). According to 

the results of the precipitation intensity index trend, there 

has been a trend toward a slight reduction in the future 

(Figure 6). It implies that the future periods will 

experience an increase in the amount of precipitation. 

Moreover, the trends in the contribution of the days with 

daily precipitation above the 99th percentile (R99PTOT) 

show an upward tendency in extremely wet days over the 

past period. The 99th percentile trends for the future 

periods 2040-2059 and 2060-2079 increased in 

comparison to the 95th percentile trend (Figure 7 and 

 

 
Fig. 4(a). Taylor diagram indicating the performance 
Precipitation (PR) of five GCMs using Linear scaling and 
Delta Change bias corrected data and original data. 

 
 
Fig. 4(b). Taylor diagram indicating the performance 
maximum Temperature (Tmax) of five GCMs using Linear 
scaling and Delta Change bias corrected data and original 
data. 

 
 
Fig. 4(c). Taylor diagram indicating the performance 
minimum Temperature (Tmin) of five GCMs using Linear 
scaling and Delta Change bias corrected data and original 
data. 



8 
S. W. Thin et al. / Lowland Technology International 2023; 24 (3): 1-18 

 Table 3. Correlation matrix of 11 climate indices using five GCMs during the past period (1981-2000). 

 
Indices 

(BCC-CSM1.1) 
PRCPTOT SDII R95PTOT R99PTOT CWD CDD SU TNx TXx TXn TNn 

PRCPTOT 1 0.55 0.40 0.06 0.21 -0.40 -0.25 -0.04 -0.02 -0.10 0.26 

SDII 0.55 1 0.40 0.29 0.28 -0.06 0.08 0.08 0.46 0.05 0.45 

R95PTOT 0.40 0.40 1 0.30 0.31 -0.33 0.28 0.02 0.30 0.14 0.23 

R99PTOT 0.06 0.29 0.30 1 0.17 -0.13 0.13 0.43 0.37 -0.21 -0.05 

CWD 0.21 0.28 0.31 0.17 1 0.22 0.05 -0.10 0.02 0.10 -0.24 

CDD -0.40 -0.06 -0.33 -0.13 0.22 1 0.04 0.33 0.04 0.07 -0.35 

SU -0.25 0.08 0.28 0.13 0.05 0.04 1 0.13 0.10 0.05 0.40 

TNx -0.04 0.08 0.02 0.43 -0.10 0.33 0.13 1 0.20 0.02 -0.18 

TXx -0.02 0.46 0.30 0.37 0.02 0.04 0.10 0.20 1 0.14 0.22 

TXn -0.10 0.05 0.14 -0.21 0.10 0.07 0.05 0.02 0.14 1 0.05 

TNn 0.26 0.45 0.23 -0.05 -0.24 -0.35 0.40 -0.18 0.22 0.05 1 

 
Indices 

(MRI-CGCM3) 
PRCPTOT SDII R95PTOT R99PTOT CWD CDD SU TNx TXx TXn TNn 

PRCPTOT 1 0.28 0.29 0.12 -0.49 0.01 0.09 0.21 0.12 0.21 -0.06 

SDII 0.28 1 0.04 0.30 0.09 0.24 0.07 -0.12 0.27 0.16 -0.18 

R95PTOT 0.29 0.04 1 0.14 0.07 -0.51 -0.05 0.19 -0.11 -0.14 0.42 

R99PTOT 0.12 0.30 0.14 1 -0.04 -0.08 0.20 -0.15 0.01 0.25 -0.09 

CWD -0.49 0.09 0.07 -0.04 1 0.23 0.12 -0.15 0.04 -0.04 0.22 

CDD 0.01 0.24 -0.51 -0.08 0.23 1 0.20 -0.24 0.12 0.23 -0.21 

SU 0.09 0.07 -0.05 0.20 0.12 0.20 1 0.04 -0.15 0.79 0.49 

TNx 0.21 -0.12 0.19 -0.15 -0.15 -0.24 0.04 1 -0.15 -0.05 0.29 

TXx 0.12 0.27 -0.11 0.01 0.04 0.12 -0.15 -0.15 1 -0.38 -0.47 

TXn 0.21 0.16 -0.14 0.25 -0.04 0.23 0.79 -0.05 -0.38 1 0.33 

TNn -0.06 -0.18 0.42 -0.09 0.22 -0.21 0.49 0.29 -0.47 0.33 1 

 
Indices 

(GISS-E2R) 
PRCPTOT SDII R95PTOT R99PTOT CWD CDD SU TNx TXx TXn TNn 

PRCPTOT 1 0.29 0.34 0.36 -0.07 0.09 -0.12 0.07 0.04 0.28 0.04 
SDII 0.29 1 0.45 0.68 0.33 0.16 -0.16 0.00 0.23 0.03 0.17 

R95PTOT 0.34 0.45 1 0.33 0.30 0.44 -0.21 0.23 0.00 -0.03 -0.01 
R99PTOT 0.36 0.68 0.33 1 0.17 -0.15 -0.35 0.08 0.05 0.13 0.10 

CWD -0.07 0.33 0.30 0.17 1 0.44 0.10 -0.11 0.00 0.15 -0.05 
CDD 0.09 0.16 0.44 -0.15 0.44 1 0.01 0.21 -0.19 -0.12 -0.24 
SU -0.12 -0.16 -0.21 -0.35 0.10 0.01 1 0.20 0.12 0.32 0.22 
TNx 0.07 0.00 0.23 0.08 -0.11 0.21 0.20 1 -0.10 -0.22 0.02 
TXx 0.04 0.23 0.00 0.05 0.00 -0.19 0.12 -0.10 1 -0.19 0.01 
TXn 0.28 0.03 -0.03 0.13 0.15 -0.12 0.32 -0.22 -0.19 1 0.31 
TNn 0.04 0.17 -0.01 0.10 -0.05 -0.24 0.22 0.02 0.01 0.31 1 

 
Indices 

(CNRM-CM5) 
PRCPTOT SDII R95PTOT R99PTOT CWD CDD SU TNx TXx TXn TNn 

PRCPTOT 1 0.57 0.22 0.16 0.30 0.09 0.08 0.28 0.07 0.60 0.41 
SDII 0.57 1 0.35 0.35 0.37 0.39 -0.26 0.50 0.55 0.29 0.32 

R95PTOT 0.22 0.35 1 0.25 0.22 -0.16 -0.37 0.18 0.54 -0.07 -0.02 
R99PTOT 0.16 0.35 0.25 1 0.13 0.16 0.18 0.41 0.51 0.32 0.41 

CWD 0.30 0.37 0.22 0.13 1 0.50 -0.33 0.22 0.24 0.02 0.06 
CDD 0.09 0.39 -0.16 0.16 0.50 1 -0.24 0.44 0.26 -0.14 0.11 
SU 0.08 -0.26 -0.37 0.18 -0.33 -0.24 1 0.07 -0.34 0.63 0.28 
TNx 0.28 0.50 0.18 0.41 0.22 0.44 0.07 1 0.14 0.20 0.18 
TXx 0.07 0.55 0.54 0.51 0.24 0.26 -0.34 0.14 1 -0.12 0.19 
TXn 0.60 0.29 -0.07 0.32 0.02 -0.14 0.63 0.20 -0.12 1 0.37 
TNn 0.41 0.32 -0.02 0.41 0.06 0.11 0.28 0.18 0.19 0.37 1 

 
Indices 

(CCSM4) 
PRCPTOT SDII R95PTOT R99PTOT CWD CDD SU TNx TXx TXn TNn 

PRCPTOT 1 0.64 0.01 0.41 -0.15 -0.03 0.03 0.18 0.26 0.49 -0.06 
SDII 0.64 1 0.39 0.57 0.40 0.30 -0.11 0.45 0.51 0.11 -0.13 

R95PTOT 0.01 0.39 1 0.38 0.36 0.24 -0.18 0.17 0.15 -0.15 -0.18 
R99PTOT 0.41 0.57 0.38 1 -0.14 -0.10 -0.16 0.13 0.19 0.21 0.05 

CWD -0.15 0.40 0.36 -0.14 1 0.55 -0.03 0.26 -0.02 -0.35 0.00 
CDD -0.03 0.30 0.24 -0.10 0.55 1 0.24 0.46 -0.13 -0.19 -0.19 
SU 0.03 -0.11 -0.18 -0.16 -0.03 0.24 1 -0.11 -0.34 0.28 0.08 
TNx 0.18 0.45 0.17 0.13 0.26 0.46 -0.11 1 0.37 0.14 0.14 
TXx 0.26 0.51 0.15 0.19 -0.02 -0.13 -0.34 0.37 1 -0.10 0.07 
TXn 0.49 0.11 -0.15 0.21 -0.35 -0.19 0.28 0.14 -0.10 1 0.18 
TNn -0.06 -0.13 -0.18 0.05 0.00 -0.19 0.08 0.14 0.07 0.18 1 

 

 

 

 
 
 
 

   

Figure 8). In both periods, consecutive wet days (CWD) 

are computed with decreasing trends (Figure 9). 

Additionally, an increasing tendency in the CDD index for 

upcoming periods has been observed (Figure 10). 
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 Table 4. Correlation matrix of 11 climate indices using five GCMs during the future period (2040-2059). 

 
Indices 

(BCC-CSM1.1) 
PRCPTOT SDII R95PTOT R99PTOT CWD CDD SU TNx TXx TXn TNn 

PRCPTOT 1 0.59 0.46 0.17 0.18 -0.48 -0.29 0.02 0.13 -0.22 0.42 

SDII 0.59 1 0.44 0.44 0.07 -0.26 0.07 0.08 0.48 0.08 0.67 

R95PTOT 0.46 0.44 1 0.30 0.30 -0.33 0.26 0.32 0.35 -0.03 0.38 

R99PTOT 0.17 0.44 0.30 1 -0.08 -0.20 0.02 0.55 0.58 -0.12 0.18 

CWD 0.18 0.07 0.30 -0.08 1 0.21 -0.05 -0.09 0.03 0.06 -0.11 

CDD -0.48 -0.26 -0.33 -0.20 0.21 1 0.22 -0.34 -0.13 0.33 -0.25 

SU -0.29 0.07 0.26 0.02 -0.05 0.22 1 0.28 0.02 0.17 0.31 

TNx 0.02 0.08 0.32 0.55 -0.09 -0.34 0.28 1 0.48 0.09 0.14 

TXx 0.13 0.48 0.35 0.58 0.03 -0.13 0.02 0.48 1 0.12 0.36 

TXn -0.22 0.08 -0.03 -0.12 0.06 0.33 0.17 0.09 0.12 1 0.18 

TNn 0.42 0.67 0.38 0.18 -0.11 -0.25 0.31 0.14 0.36 0.18 1 

 
Indices 

(MRI-CGCM3) 
PRCPTOT SDII R95PTOT R99PTOT CWD CDD SU TNx TXx TXn TNn 

PRCPTOT 1 0.09 0.16 0.32 -0.41 0.04 0.06 0.12 0.18 0.22 -0.20 

SDII 0.09 1 0.16 0.19 -0.14 -0.13 -0.14 0.29 0.28 -0.18 -0.03 

R95PTOT 0.16 0.16 1 0.17 0.03 -0.51 -0.02 0.22 0.09 -0.06 0.32 

R99PTOT 0.32 0.19 0.17 1 0.03 -0.10 0.20 -0.01 -0.13 0.25 -0.02 

CWD -0.41 -0.14 0.03 0.03 1 0.31 0.08 0.07 -0.09 0.06 0.25 

CDD 0.04 -0.13 -0.51 -0.10 0.31 1 0.11 -0.07 -0.06 0.30 -0.08 

SU 0.06 -0.14 -0.02 0.20 0.08 0.11 1 0.30 -0.12 0.78 0.43 

TNx 0.12 0.29 0.22 -0.01 0.07 -0.07 0.30 1 0.18 -0.01 0.11 

TXx 0.18 0.28 0.09 -0.13 -0.09 -0.06 -0.12 0.18 1 -0.14 -0.02 

TXn 0.22 -0.18 -0.06 0.25 0.06 0.30 0.78 -0.01 -0.14 1 0.27 

TNn -0.20 -0.03 0.32 -0.02 0.25 -0.08 0.43 0.11 -0.02 0.27 1 

 
Indices 

(GISS-E2R) 
PRCPTOT SDII R95PTOT R99PTOT CWD CDD SU TNx TXx TXn TNn 

PRCPTOT 1 0.26 0.36 0.42 -0.19 0.05 -0.10 0.40 0.02 0.26 0.32 
SDII 0.26 1 0.18 0.55 0.34 -0.03 0.02 0.15 0.42 0.34 0.21 

R95PTOT 0.36 0.18 1 0.36 0.24 0.44 -0.27 0.23 0.05 -0.03 0.20 
R99PTOT 0.42 0.55 0.36 1 0.19 -0.18 -0.31 0.14 0.20 0.11 -0.02 

CWD -0.19 0.34 0.24 0.19 1 0.35 0.01 -0.13 -0.04 0.12 -0.23 
CDD 0.05 -0.03 0.44 -0.18 0.35 1 -0.16 0.20 -0.31 -0.08 -0.23 
SU -0.10 0.02 -0.27 -0.31 0.01 -0.16 1 0.29 0.10 0.30 0.13 
TNx 0.40 0.15 0.23 0.14 -0.13 0.20 0.29 1 -0.30 0.15 0.08 
TXx 0.02 0.42 0.05 0.20 -0.04 -0.31 0.10 -0.30 1 -0.07 0.26 
TXn 0.26 0.34 -0.03 0.11 0.12 -0.08 0.30 0.15 -0.07 1 0.20 
TNn 0.32 0.21 0.20 -0.02 -0.23 -0.23 0.13 0.08 0.26 0.20 1 

 
Indices 

(CNRM-CM5) 
PRCPTOT SDII R95PTOT R99PTOT CWD CDD SU TNx TXx TXn TNn 

PRCPTOT 1 0.40 0.12 0.13 0.27 0.09 0.16 0.14 -0.22 0.61 0.18 
SDII 0.40 1 0.21 0.33 0.18 0.20 -0.12 0.15 0.31 0.27 0.01 

R95PTOT 0.12 0.21 1 0.32 0.15 -0.26 -0.35 0.34 0.46 -0.04 -0.16 
R99PTOT 0.13 0.33 0.32 1 0.15 0.06 0.27 0.32 0.34 0.17 0.30 

CWD 0.27 0.18 0.15 0.15 1 0.43 -0.21 0.16 0.13 0.31 -0.17 
CDD 0.09 0.20 -0.26 0.06 0.43 1 -0.28 0.06 0.28 -0.09 0.08 
SU 0.16 -0.12 -0.35 0.27 -0.21 -0.28 1 -0.08 -0.51 0.51 0.31 
TNx 0.14 0.15 0.34 0.32 0.16 0.06 -0.08 1 0.16 -0.05 0.42 
TXx -0.22 0.31 0.46 0.34 0.13 0.28 -0.51 0.16 1 -0.38 0.12 
TXn 0.61 0.27 -0.04 0.17 0.31 -0.09 0.51 -0.05 -0.38 1 -0.02 
TNn 0.18 0.01 -0.16 0.30 -0.17 0.08 0.31 0.42 0.12 -0.02 1 

 
Indices 

(CCSM4) 
PRCPTOT SDII R95PTOT R99PTOT CWD CDD SU TNx TXx TXn TNn 

PRCPTOT 1 0.48 0.02 0.41 -0.06 -0.06 0.09 0.27 0.22 0.51 -0.02 
SDII 0.48 1 0.32 0.34 0.59 0.40 0.09 0.38 0.22 0.42 -0.41 

R95PTOT 0.02 0.32 1 0.38 0.55 0.26 -0.16 0.09 0.12 0.02 -0.35 
R99PTOT 0.41 0.34 0.38 1 0.03 -0.14 0.12 0.17 0.26 0.10 0.01 

CWD -0.06 0.59 0.55 0.03 1 0.65 0.13 0.06 -0.12 0.00 -0.38 
CDD -0.06 0.40 0.26 -0.14 0.65 1 0.23 0.23 0.14 -0.11 -0.41 
SU 0.09 0.09 -0.16 0.12 0.13 0.23 1 0.07 -0.33 -0.01 0.01 
TNx 0.27 0.38 0.09 0.17 0.06 0.23 0.07 1 0.30 0.40 -0.07 
TXx 0.22 0.22 0.12 0.26 -0.12 0.14 -0.33 0.30 1 0.04 -0.06 
TXn 0.51 0.42 0.02 0.10 0.00 -0.11 -0.01 0.40 0.04 1 -0.03 
TNn -0.02 -0.41 -0.35 0.01 -0.38 -0.41 0.01 -0.07 -0.06 -0.03 1 
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 Table 5. Correlation matrix of 11 climate indices using five GCMs during the future period (2060-2079). 

 
Indices 

(BCC-CSM1.1) 
PRCPTOT SDII R95PTOT R99PTOT CWD CDD SU TNx TXx TXn TNn 

PRCPTOT 1 0.61 0.53 0.22 0.21 -0.47 -0.08 0.12 0.16 0.01 0.42 

SDII 0.61 1 0.42 0.51 -0.19 -0.28 0.08 0.39 0.49 0.12 0.52 

R95PTOT 0.53 0.42 1 0.30 0.34 -0.31 0.24 0.20 0.27 0.10 0.34 

R99PTOT 0.22 0.51 0.30 1 -0.09 -0.20 0.03 0.64 0.22 -0.07 0.11 

CWD 0.21 -0.19 0.34 -0.09 1 0.06 0.04 -0.01 0.22 0.00 -0.14 

CDD -0.47 -0.28 -0.31 -0.20 0.06 1 0.21 -0.23 0.23 0.23 -0.19 

SU -0.08 0.08 0.24 0.03 0.04 0.21 1 0.36 0.31 0.52 0.29 

TNx 0.12 0.39 0.20 0.64 -0.01 -0.23 0.36 1 0.14 0.40 0.27 

TXx 0.16 0.49 0.27 0.22 0.22 0.23 0.31 0.14 1 0.27 0.16 

TXn 0.01 0.12 0.10 -0.07 0.00 0.23 0.52 0.40 0.27 1 0.33 

TNn 0.42 0.52 0.34 0.11 -0.14 -0.19 0.29 0.27 0.16 0.33 1 

 
Indices 

(MRI-CGCM3) 
PRCPTOT SDII R95PTOT R99PTOT CWD CDD SU TNx TXx TXn TNn 

PRCPTOT 1 0.14 0.09 0.29 -0.28 0.08 0.13 0.03 0.20 0.12 -0.04 

SDII 0.14 1 0.02 0.29 -0.15 -0.02 0.22 -0.12 0.33 0.08 -0.21 

R95PTOT 0.09 0.02 1 0.16 0.10 -0.51 -0.15 0.06 0.24 0.16 0.61 

R99PTOT 0.29 0.29 0.16 1 0.04 -0.07 0.30 -0.23 0.14 0.30 0.05 

CWD -0.28 -0.15 0.10 0.04 1 0.37 0.07 0.22 -0.06 0.12 0.13 

CDD 0.08 -0.02 -0.51 -0.07 0.37 1 0.19 0.05 -0.24 0.18 -0.27 

SU 0.13 0.22 -0.15 0.30 0.07 0.19 1 0.07 -0.13 0.70 0.34 

TNx 0.03 -0.12 0.06 -0.23 0.22 0.05 0.07 1 -0.25 0.05 0.11 

TXx 0.20 0.33 0.24 0.14 -0.06 -0.24 -0.13 -0.25 1 -0.02 -0.23 

TXn 0.12 0.08 0.16 0.30 0.12 0.18 0.70 0.05 -0.02 1 0.36 

TNn -0.04 -0.21 0.61 0.05 0.13 -0.27 0.34 0.11 -0.23 0.36 1 

 
Indices 

(GISS-E2R) 
PRCPTOT SDII R95PTOT R99PTOT CWD CDD SU TNx TXx TXn TNn 

PRCPTOT 1 0.21 0.47 0.32 0.08 0.24 -0.13 0.32 0.02 0.20 0.28 
SDII 0.21 1 0.04 0.51 0.24 -0.17 0.13 0.18 0.26 0.48 0.19 

R95PTOT 0.47 0.04 1 0.43 0.18 0.37 -0.41 0.27 0.22 -0.02 0.10 
R99PTOT 0.32 0.51 0.43 1 0.15 0.01 -0.35 0.08 0.28 -0.03 0.14 

CWD 0.08 0.24 0.18 0.15 1 0.27 0.00 -0.15 -0.04 0.31 -0.18 
CDD 0.24 -0.17 0.37 0.01 0.27 1 -0.21 0.25 -0.24 0.01 -0.27 
SU -0.13 0.13 -0.41 -0.35 0.00 -0.21 1 0.07 0.00 0.50 0.13 
TNx 0.32 0.18 0.27 0.08 -0.15 0.25 0.07 1 -0.32 0.11 -0.05 
TXx 0.02 0.26 0.22 0.28 -0.04 -0.24 0.00 -0.32 1 -0.20 0.35 
TXn 0.20 0.48 -0.02 -0.03 0.31 0.01 0.50 0.11 -0.20 1 0.18 
TNn 0.28 0.19 0.10 0.14 -0.18 -0.27 0.13 -0.05 0.35 0.18 1 

 
Indices 

(CNRM-CM5) 
PRCPTOT SDII R95PTOT R99PTOT CWD CDD SU TNx TXx TXn TNn 

PRCPTOT 1 0.22 0.04 0.10 0.23 -0.04 0.22 0.36 -0.24 0.52 0.13 
SDII 0.22 1 0.32 0.64 0.03 -0.17 0.10 0.20 0.11 0.20 0.18 

R95PTOT 0.04 0.32 1 0.33 0.16 0.01 -0.34 0.16 0.43 0.33 -0.20 
R99PTOT 0.10 0.64 0.33 1 0.15 0.08 0.12 0.37 0.39 0.30 0.29 

CWD 0.23 0.03 0.16 0.15 1 0.27 -0.17 0.35 0.23 0.22 -0.23 
CDD -0.04 -0.17 0.01 0.08 0.27 1 -0.47 -0.11 0.46 -0.31 0.16 
SU 0.22 0.10 -0.34 0.12 -0.17 -0.47 1 0.35 -0.28 0.28 0.16 
TNx 0.36 0.20 0.16 0.37 0.35 -0.11 0.35 1 -0.02 0.43 0.12 
TXx -0.24 0.11 0.43 0.39 0.23 0.46 -0.28 -0.02 1 0.02 0.02 
TXn 0.52 0.20 0.33 0.30 0.22 -0.31 0.28 0.43 0.02 1 -0.41 
TNn 0.13 0.18 -0.20 0.29 -0.23 0.16 0.16 0.12 0.02 -0.41 1 

 
Indices 

(CCSM4) 
PRCPT

OT 
SDII R95PTOT R99PTOT CWD CDD SU TNx TXx TXn TNn 

PRCPTOT 1 0.43 0.04 0.41 -0.18 -0.05 0.19 -0.18 0.03 0.52 0.20 
SDII 0.43 1 0.06 0.46 0.15 0.12 -0.03 0.01 0.59 0.43 0.11 

R95PTOT 0.04 0.06 1 0.39 0.38 0.25 -0.14 -0.21 -0.07 0.27 -0.60 
R99PTOT 0.41 0.46 0.39 1 -0.14 -0.07 0.16 0.08 0.36 0.31 -0.07 

CWD -0.18 0.15 0.38 -0.14 1 0.60 -0.19 -0.44 -0.14 -0.07 -0.54 
CDD -0.05 0.12 0.25 -0.07 0.60 1 0.09 -0.08 0.03 0.09 -0.32 
SU 0.19 -0.03 -0.14 0.16 -0.19 0.09 1 0.35 -0.21 0.15 0.40 
TNx -0.18 0.01 -0.21 0.08 -0.44 -0.08 0.35 1 0.18 0.20 0.36 
TXx 0.03 0.59 -0.07 0.36 -0.14 0.03 -0.21 0.18 1 -0.08 0.26 
TXn 0.52 0.43 0.27 0.31 -0.07 0.09 0.15 0.20 -0.08 1 -0.07 
TNn 0.20 0.11 -0.60 -0.07 -0.54 -0.32 0.40 0.36 0.26 -0.07 1 
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Fig. 5. Trend magnitudes of PRCPTOT indices at Bago Station during (a) past period (1981-2000), (b) future period (2040-2059) 
and (c) future period (2060-2079). 
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Fig. 6. Trend magnitudes of SDII indices at Bago Station during (a) past period (1981-2000), (b) future period (2040-2059) and (c) 
future period (2060-2079). 
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Fig. 7. Trend magnitudes of R99PTOT indices at Bago Station during (a) past period (1981-2000), (b) future period (2040-2059) and 
(c) future period (2060-2079). 
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Fig. 8. Trend magnitudes of R95PTOT indices at Bago Station during (a) past period (1981-2000), (b) future period (2040-2059) and 
(c) future period (2060-2079). 
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Fig. 9. Trend magnitudes of CWD indices at Bago Station during (a) past period (1981-2000), (b) future period (2040-2059) and (c) 
future period (2060-2079). 
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Fig. 10. Trend magnitudes of CDD indices at Bago Station during (a) past period (1981-2000), (b) future period (2040-2059) and (c) 
future period (2060-2079). 
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Fig. 11. Trend magnitudes of SU indices at Bago Station during (a) past period (1981-2000), (b) future period (2040-2059) and (c) 
future period (2060-2079). 
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Fig. 12. Trend magnitudes of TXx indices at Bago Station during (a) past period (1981-2000), (b) future period (2040-2059) and (c) 
future period (2060-2079). 
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Fig. 13. Trend magnitudes of TXn indices at Bago Station during (a) past period (1981-2000), (b) future period (2040-2059) and (c) 
future period (2060-2079). 
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Fig. 14. Trend magnitudes of TNx indices at Bago Station during (a) past period (1981-2000), (b) future period (2040-2059) and (c) 
future period (2060-2079). 
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Fig. 15. Trend magnitudes of TNn indices at Bago Station during (a) past period (1981-2000), (b) future period (2040-2059) and (c) 
future period (2060-2079). 
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4.2.2 Temperature 

In terms of temperature indices, every index 

indicates that maximum value of daily maximum 

temperature and maximum value of daily minimum 

temperatures are continually warming for future. Table 3, 

Table 4 and Table 5 mention the correlation matrices of 

each climate indices related to temperature and 

precipitation variables in time series scale. The annual 

maximum values of the daily minimum temperature (TNx) 

and the annual maximum value of daily maximum 

temperature (TXx) display strong correlations at Bago 

Station during the number of summer days (SU) that 

when daily maximum temperature is greater than 25˚C in 

the past period (1981-2000). 

In order to investigate the significant trend of 

temperature and precipitation in the Bago River Basin, 

Myanmar, the MK test and p-value test have been 

applied. The positive Kendall's Z values indicate an 

upward tendency and suggest that this trend will continue 

over time. Figure 11 mention the SU’s upward future 

trend. It means that there will be an increase in the 

number of summer days, which will cause this basin to 

warm. According to analysis, the annual maximum 

temperature values of the daily maximum temperature 

(TXx) and the annual minimum temperature values of the 

daily maximum temperature (TXn) climate indices exhibit 

the upward tendency in both future time periods (Figure 

12 and Figure 13). Furthermore, the TNx index has been 

showing an increasing trend during the past and future 

periods and the TNn index as well (Figure 14 and Figure 

15). According to these findings, temperatures have been 

increasing for future periods compared to the past 20 

years. 

 

4.3 Evaluation of Hydrological Components   

The impact of climate change on water balance was 

evaluated using the GCMs under the RCP 4.5 scenario. 

The average annual water balance components including 

the surface flow, lateral flow, groundwater flow and 

evapotranspiration related to five different GCMs during 

the past period (1981-2000) are shown in Figure 16 (a). 

In the past period, the average annual surface flow has 

increased by 30% in BCC-CSM1.1, 32% in MRI-CGCM3, 

29% in GISS-E2R, 28% in CNRM-CM5, and 27% in 

CCSM4, according to each of models’ performance. In 

addition, each GCM shows a significant increase in the 

percentage changes in average annual evapotran-

spiration throughout the past years. However, the percent 

change in average annual lateral flow is not particularly 

distinct between the observed and GCMs data. In 

contrast to the aforementioned five GCMs, CNRM-CM5 

has the fewest deviations from the observed data. Figure 

16 (b) and Figure 16 (c) show the percent change of 

average annual hydrological components using multiple 

GCMs for the future periods (2040-2059 and 2060-2079), 

respectively, under the RCP 4.5 scenario. In general, it is 

feasible to predict that all aspects of water balance 

components will alter substantially over the period of 

2060-2079 compared to the period of 2040-2059. The 

average annual surface flow and evapotranspiration are 

also expected to be higher than the past period.  

Figure 17 expressed the annual surface flow 

variability using 11 climate indices for both the past and 

the future periods. According to this graph (Figure 17), 

the surface flow will consistently rise across all 

subsequent time periods. In comparison to other climate 

indices throughout three different time periods, surface 

flow utilizing the PRCPTOT indicator has a substantial 

impact. The maximum value of the surface flow 

fluctuation for the annual total precipitation climate index 

(PRCPTOT) ranges from 1,694 mm/year in 2040-2059 to 

1,986 mm/year in 2060-2079. The surface flow of water 

balance is directly impacted by the significant amount of 

precipitation. However, the annual lateral flow utilizing all 
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Fig. 16 (a). Average annual water balance components 
change in % using five GCMs during the past period (1981-
2000). 
 

0% 20% 40% 60% 80% 100%

BCC-CSM1.1

MRI-CGCM3

GISS-E2R

CNRM-CM5

CCSM4

Surface Flow Lateral Flow Groundwater Flow Evapotranspiration

A
v
e
ra

g
e

 A
n

n
u

a
l 
H

y
d

ro
lo

g
ic

a
l 

C
o

m
p

o
n

e
n

ts
 C

h
a

n
g

e
 (

%
)

 
Fig. 16 (b). Average annual water balance components 
change in % using five GCMs during the future period (2040-
2059). 
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Fig. 16 (c). Average annual water balance components 
change in % using five GCMs during the future period (2060-
2079). 
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climate indices will decline in both upcoming periods 

(Figure 18). Over two future periods, it is anticipated that 

there will be some fluctuation changes in the lateral flow 

using the precipitation climate indices (PRCPTOT, SDII, 

R95PTOT, R99PTOT, CWD, and CDD). On the other 

hand, the lateral flow utilizing the temperature indices 

(SU, TNx, TXx, TNn, and TXn) shows few differences in 

both the future periods compared to the past period. 

Figure 19 demonstrates the annual variations of 

groundwater flow over the past and future periods. The 

groundwater flow will marginally rise in future times by 

employing the climate indices. Moreover, future extreme 

climatic indices will have an impact on the hydrological 

process due to the increase in evapotranspiration driven 

by the adoption of temperature indices (SU, TNx, TXx, 

TNn, and TXn) (Figure 20). In order to manage the water 
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Fig. 18 (a). Annual lateral flow variability by using 11 climate 
indices during the past period (1981-2000). 
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Fig. 18 (b). Annual lateral flow variability by using 11 climate 
indices during the future period (2040-2059). 
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Fig. 18 (c). Annual lateral flow variability by using 11 climate 
indices during the future period (2060-2079). 
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Fig. 17 (a). Annual surface flow variability by using 11 climate 
indices during the past period (1981-2000). 
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Fig. 17 (b). Annual surface flow variability by using 11 climate 
indices during the future period (2040-2059). 
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Fig. 17 (c). Annual surface flow variability by using 11 climate 
indices during the future period (2060-2079). 
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resources in a watershed, it is essential to overcome how 

extreme climate change affects the hydrological process 

in the Bago River Basin, Myanmar. 

 

5. Conclusions 

This paper focuses on how the hydrological process 

of the Bago River Basin is affected by extreme climatic 

indices. According to the analysis's findings, the annual 

total precipitation (PRCPTOT), precipitation intensity 

(SDII), and maximum temperature values in daily 

maximum temperature (TXx) indices will have a 

substantial impact on future periods. The water balance 

components of the Bago River Basin on the hydrological 

process are examined using the SWAT model to 

determine the effects of each extreme climate index 

alteration. The model is successfully constructed and 
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Fig. 20 (a). Annual evapotranspiration variability by using 11 
climate indices during the past period (1981-2000). 
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Fig. 20 (b). Annual evapotranspiration variability by using 11 
climate indices during the past period (1981-2000). 
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Fig. 20 (c). Annual evapotranspiration variability by using 11 
climate indices during the future period (2060-2079). 
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Fig. 19 (a). Annual groundwater flow variability by using 11 
climate indices during the past period (1981-2000). 
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Fig. 19 (b). Annual groundwater flow variability by using 11 
climate indices during the future period (2040-2059). 
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Fig. 19 (c). Annual lateral flow variability by using 11 climate 
indices during the future period (2060-2079). 
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sufficiently operates to provide for an accurate analysis of 

the watershed using five different GCMs. Additionally, 

bias-corrected GCMs can be employed to evaluate the 

hydrological components, including the effects of climate 

change. Moreover, the surface flow will be more 

significant in magnitude and frequency under the RCP 

4.5 scenario for all future periods. The evapotranspiration 

is also expected to increase as a result of the extremes 

temperature. Consequently, it is projected that both the 

groundwater flow and the lateral flow will decline in the 

coming years. Furthermore, there are other factors that 

contribute to hydrological process and the components of 

the water balance. Land use, land cover change and 

other aspects of the river system that are impacted by 

human effect also play an important role in such 

hydrological process and can be explored more as a 

result of these factors, which are excluded from the study. 

This paper examines the impact of extreme climatic 

indices on regional hydrological processes in the Bago 

River Basin for the future periods.  
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