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Abstract 

Structural behaviors of plate components, such as internal stress, deflection, buckling and dynamic response, are important in the structural 

design of aerospace, mechanical, civil and other industries. These behaviors are known to be affected not only by plate shapes and material 

properties but also by edge conditions. Any one of the three classical edge conditions in bending, namely free, simply supported and clamped 
edges, may be used to model the constraint along an edge of plates. Along the entre boundary with plural edges, there exist a wide variety of 

combinations in the entire plate boundary, each giving different values of structural responses. For counting the total number of possible 

combinations, the present paper considers Polya counting theory in combinatorial mathematics. For various plate shapes, formulas are 

derived for counting exact numbers in combination. In some examples, such combinations are confirmed in the figures by a trial and error 
approach. 

Keywords: Counting problem; combinatory mathematics; plate shape; Polya counting theory; structural response 

1. Introduction 

Many structural panels are found and can be modelled in 

the form of flat plates in the fields of mechanical, civil, 

aeronautical, ocean and other industries. Technical 

publications are therefore numerous on mechanics of flat 

plates. For example, a monograph “Vibration of Plates” was 

compiled by Leissa [1] in 1969 to cover the topic from 

vibrational viewpoint. He also listed up the natural 

frequencies of isotropic rectangular plates for all the possible 

combinations of classical edge conditions [2].  

Apart from vibrational aspect, it is important to know in 

design process the mechanical behaviors, such as stress and 

strain, deflection and critical buckling loads. These values 

are influenced significantly by edge conditions (The edge 

conditions are stated as boundary conditions in mathematics, 

but in the present paper, the terminology “edge condition” is 

used throughout the paper from mechanics viewpoint), and 

should be summarized as sets of design data in 

comprehensive fashion. To the present, however, little 

efforts have been made to clarify even the number of 

combinations in terms of edge conditions. For this purpose, 

an attempt is made in this paper to count all possible 

combinations of edge conditions. Mathematically, it is 

interpreted as combinatorics problem of counting different 

classes (combinations) that give different sets of results on 

stress and so on, as the values mentioned above. 

As for methodology, Polya counting theory is used.  Polya 

made fundamental contributions to combinatorics, number 

theory, numerical analysis and probability theory. The 

theory is also known as Polya enumeration theorem and 

Redfield–Polya theorem. It is a theorem in combinatorics 

that generalizes Burnside's lemma on the number of orbits 

of a group action on a set. After the first publication by 

Redfield in 1927 [3], Polya developed the theory [4] as a 

powerful tool in combinatorics and graph theory (for 

example, refer to textbook [5]), and popularized by applying 

it to many counting problems.  Particularly, it has a wide 

range of applications to enumeration of chemical 

compounds. For example, Haigh and Baker [6] applied it to 

enumeration of the isomers in chemistry. 

In the present paper, the theory is used to count the 

number of combinations of edge conditions that yield 

different mechanical behaviours. Such behaviours include 

stress distribution, deflection, natural frequencies and 

critical buckling loads found in isotropic flat plates with 

general shapes. After the method is outlined for counting the 

present cases, cyclic polynomials are derived and used to 

calculate eighteen examples with different edge numbers 

when the number of each edge condition is given for 1, 2, 3 
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and 4. The total number of sets of edge conditions is listed 

for eighteen different plate shapes. For showing validity of 

these results, actual combinations are listed for rhombic, 

symmetric trapezoidal, equilateral and isosceles triangular 

and regular pentagonal plates in the case of two edge 

conditions (free edge and clamped edge) by a trial and error 

approach.  

 

2. Polya Counting Theory 

The combinatorics approach is outlined here as used in [7]. 

In Group theory, a permutation is defined as a one-to-one 

mapping from a set D onto D. For example, when there is a 

set D composed of four elements {1,2,3,4}, i.e., D={1,2,3,4}, 

a permutation of transposing 12, 24, 33, 41 can be 

written as  

1 2 3 4

2 4 3 1
P

 
  
 

                                (1) 

or more simply, a cyclic notation 

   124 3P                                       (2) 

can be used as used in this paper. For such two permutations, 

it is clear that a product P1P2 of P1 and P2 also becomes a 

permutation. In Group theory, a set G of all permutations 

acting on a set D can be considered as a finite group. The 

reason is that the associative law exists with a unit and 

inverse elements in G. In the present problem, a set 

composed of all possible rotation and flipping of a plate 

shape becomes such a permutation group.  

The next important notation is “class” in counting 

problem.  In this paper, this can be explained next by using 

a case of square plate. Figure 1 presents a square isotropic 

plate (i.e, plate made of no material anisotropy), and four 

edges are numbered as Edge 1 (left-hand edge), Edge 2 

(lower edge), Edge 3 (right-hand edge) and Edge 4 (upper 

edge) in counter-clock wise. When one of classical edge 

conditions of free (denoted by F), simply-supported (S) and 

clamped (C ) in bending is applied to each of the four edges, 

the notation of entire edges is given by four capital letters, 

for example, CSFF is the plate with calmed (C) at Edge 1, 

simply supported (S) at Edge 2 and free (F) at Edge 3 and 4.  

   The square plate in Fig.1 now has four edges under three 

different boundary conditions (F,S,C), and when the four 

edges are fixed in the space, the number of edge conditions 

is fixed by 34=81. However, when this combination problem 

is looked from mechanical behaviors such as stress 

distribution, deflection, vibration frequencies, and critical 

buckling loads, two cases of CSFF and FCSF are identical 

because one case FCSF is obtained by rotating CSFF with 

90 degree in counter-clockwise. These two cases are said to 

belong to the same class. In contrast, other cases of CSFF 

and CFSF (the same number of C,S,F exist) cannot be in the 

same class, because one case cannot be realized either by 

rotation or flipping. This paper considers counting the 

number of classes when a cyclic permutation group G acts 

on a set D.   

    

Figure 1. Square plate and symmetry axes (Ex.1) 

Polya counting theory [4, 5] derives a kind of polynomial 

“cyclic polynomial” in order to calculate the number of 

essentially different cases (i.e, number of different “classes”). 

When a cyclic group, acting on a finite group, is denoted by 

G and Ck(G) is a number of elements in G with the cyclic 

number k, the cyclic polynomial for a group G acting on D 

is given by  

   
1

1
G

k
G k

k

Z x C G x
G 

                             (3) 

3. Application of the Theory and Cyclic Polynomials 

3.1. Plates with four straight edges 

3.1.1. Square plate (Ex.1) 

  As shown in Fig.1, a square plate has four edges of equal 

length and four symmetrical axes. Two axes are parallel to 

the edges (labeled as A and C in the figure), and remaining 

two axes are diagonal axes labelled as B and D. 

   For rotation around the central point, it has four possible 

rotational motions in counter-clockwise as 

            1 2 3 4 1234 13 24 1432rG , , ,     (4) 

with rotating angles 0°,  90°, 180° and 270°, respectively.  

   For flipping, it has four possible flipping motions as  

              1 3 24 12 34 2 4 13 14 23fG , , ,  (5) 

by flipping with respect to the symmetric axes A, B, C and 

D, respectively.  By adding two sets of motions, one gets 

8r fG G G , G                                   (6) 

and number of elements in Eqs.(4) and (5) are given for each 

cyclic number k as 

4 3 2 11 2 3 2C , C , C , C                          (7) 

From (6) and (7), a cyclic polynomial in this example is 

   4 3 21
2 3 2

8
GZ x x x x x                        (8) 

This case was already obtained in Ref. [7] written by the  

present author.  
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Figure 2. Rectangular plate and symmetry axes (Ex.2)  

 
Figure 3. Rhombic plate and symmetry axes (Ex.3) 

 
Figure 4. Parallelogram plate (Ex.4) 

 
Figure 5. Symmetric trapezoidal plate (Ex.5) 

 

Figure 6. Asymmetric trapezoidal plate (Ex.6) 

3.1.2. Rectangular plate (Ex.2) 

A rectangular plate is generalization of a square plate, 

and diagonal symmetric axes do not exist, leaving only two 

symmetric axes parallel to the edges (labelled as A and B) as 

shown in Fig. 2.  For rotation around the central point, it has 

four possible rotational motions in counter-clockwise as 

        1 2 3 4 13 24rG ,                      (9) 

with angles 0° and 180°, respectively.  It has two flipping 

motions as  

        1 3 24 2 4 13fG ,                    (10) 

by flipping with respect to the symmetric axes A and B, 

respectively.  By adding two sets of motions, one gets a 

number of elements in Eqs.(9) and (10), totally, as 

4 3 2 11 2 1 0C , C , C , C                          (11) 

A cyclic polynomial in this example is 

   4 3 21
2

4
GZ x x x x                       (12) 

This case is also obtained in Ref. [7].  

3.1.3. Rhombic plate (Ex.3) 

  A rhombus is composed of four edges of equal length, but 

the corners are no longer perpendicular. There are two 

symmetric axes connecting opposite corners as shown in 

Fig.3. For rotation and flipping, the motions are described as 

motions 

        1 2 3 4 13 24rG ,                   (13) 

and  

      12 34 14 23fG ,                         (14) 

by flipping with respect to the symmetric axes A and B, 

respectively.  By following the same process, a cyclic 

polynomial is 

   4 21
3

4
GZ x x x                                 (15) 

3.1.4. Parallelogram plate (Ex.4) 

  As shown in Fig.4, a parallelogram is a geometry where 

two pairs of parallel straight lines intersect each other. The 

length of two sets of edges are generally not equal (if they 

are equal, it becomes a rhombus). There are no symmetry 

axes in geometry. For rotation and flipping, the motions are  

        1 2 3 4 13 24rG ,                   (16) 

and  0fG  . A cyclic polynomial is 

   4 21

2
GZ x x x                                 (17) 
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3.1.5. Symmetric trapezoidal plate (Ex.5) 

  As shown in Fig. 5, a symmetric trapezoid is a geometry 

where one pairs of parallel straight lines is intersected by a 

pair of lines with the same angle. Only one pair of opposite 

edges is of equal length. There is only one symmetry axis in 

geometry. For rotation and flipping, the motions are  

          1 2 3 4 13 2 4r fG ,G         (18) 

A cyclic polynomial is 

   4 31

2
GZ x x x                                 (19) 

3.1.6. Asymmetric trapezoidal plate (Ex.6) 

   An asymmetric trapezoid is a geometry with a pair of two 

parallel lines but the other two opposite straight lines have 

different intersecting angles to the parallel lines. This 

geometry has no symmetric axis as seen in Fig. 6, and has 

only unit element,   

     1 2 3 4rG                    (20) 

and  0fG  . A cyclic polynomial is 

  4
GZ x x                                (21) 

3.2. Triangular Plates 

3.2.1. Equilateral triangular plate (Ex.7) 

An equilateral triangle is a triangle where all three sides 

are equal in length, and is also equiangular. All three internal 

angles are 60° each. It is also a regular polygon and can be 

called as a regular triangle. As shown in Fig.7, it has three 

symmetric axes, labelled as A, B and C. For rotation around 

the central point, it has three rotational motions in counter-

clockwise as 

        1 2 3 123 132rG , ,                      (22) 

with 0°, 120° and 240°, respectively.  It has two flipping 

motions as  

         1 23 2 13 3 12fG , ,                    (23) 

by flipping with respect to the symmetric axes A, B and C, 

respectively.  A cyclic polynomial in this example is 

   3 21
3 2

6
GZ x x x x                       (24) 

3.2.2. Isosceles triangular plate (Ex.8) 

An isosceles triangle in Fig. 8 has only one axis of 

symmetry, and has only one action for each of rotation and 

flipping. Therefore, a cyclic polynomial is   

 

 

Figure 7. Equilateral triangular plate (Ex.7) 

   3 21

2
GZ x x x                      (25) 

3.2.3. Right-angled triangular plate (Ex.9) 

A right-angled triangle has no axis in symmetry, and can 

be an isosceles triangle when length of two edges is equal. 

But in this section as shown in Fig.9, all three edges are 

assumed to be different length, then, there is only an unit 

action. A cyclic polynomial is 

  3
GZ x x                                    (26) 

3.2.4. General triangular plate (Ex.10) 

For most general case of triangle in Fig.10, there are no 

edges of equal length. Because it has only unit element,  

  3
GZ x x                                    (27) 

 

Figure 8. Isosceles triangular plate (Ex.8) 

 

Figure 9. Right-angled triangular plate (Ex.9) 
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Figure 10. General triangular plate (Ex.10) 

 
Figure 11. Regular pentagonal plate (Ex.11) 

 

Figure 12. Regular hexagonal plate (Ex.12) 

3.3. Polygonal Plates 

3.3.1. Regular pentagonal plate (Ex.11) 

A pentagon is a five-sided polygon and the sum of the 

internal angles is 540°. A self-intersecting regular pentagon 

is called a pentagram. As shown in Fig. 11, it has five 

symmetric axes, labelled as A, B, C, D and E. For rotation 

around the central point, it has five rotational motions in 

counter-clockwise as 

         

   

1 2 3 4 5 12345 13524

14253 15432

rG , , ,

,


           (28) 

with 0°, 72°, 144°, 216° and 288°, respectively.  It has five 

flipping motions as  

           

       

1 25 34 2 13 45 3 24 15

4 12 35 5 23 14

fG , , ,

,


       (29) 

 

Figure 13. Regular septagonal plate (Ex.13) 

 

Figure 14. Regular octagonal plate (Ex.14) 

by flipping with respect to the symmetric axes A, B, C, D 

and E, respectively.  So, a cyclic polynomial in this case is 

   5 31
5 4

10
GZ x x x x                       (30) 

3.3.2. Regular hexagonal plate (Ex.12) 

A regular hexagonal plate has six symmetric axes (A, B, 

C, D, E and F) as shown in Fig. 12. For rotations,  

           

        

1 2 3 4 5 6 123456 135 246

14 25 36 153 264 165432

rG , , ,

, ,


 (31) 

with 0°, 60°, 120°, 180°, 240° and 300°, respectively.  It has 

two flipping motions as  

       
        

         

12 36 45 23 14 56

34 25 16 3 6 24 15

1 4 26 35 2 5 14 46

fG , ,

, ,

,



                     (32) 

Then, a cyclic polynomial is   

   6 4 3 21
3 4 2 2

12
GZ x x x x x x             (33) 
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3.3.3. Regular septagonal  plate (Ex.13)  

A septagon (or heptagon) is a seven seven-sided polygon, 

as sown in  Fig. 13, it has seven symmetric axes. For rotation 

around the central point, it has seven rotational motions. 

           

       

1 2 3 4 5 6 7 1234567 1357246

1473625 1526374 1642753 1765432

rG , , ,

, , ,


  

(34) 

with 0°, α, 2α, 3α, 4α, 5α and 6α (α=360/7°), respectively.  

It has seven flipping motions as  

         
         

         

    

1 27 36 45 2 13 47 56

3 24 15 67 4 35 26 17

5 46 37 12 6 14 23 57

7 16 25 34

fG , ,

, ,

,



       (35) 

Therefore, a cyclic polynomial in this case is 

   7 41
7 6

14
GZ x x x x                 (36) 

3.3.4. Regular octagonal  plate (Ex.14) 

An octagon is an eight-sided polygon, as sown in Fig. 14, 

it has eight symmetric axes. For rotation around the central 

point, it has eight rotational motions. 

          
         

      

1 2 3 4 5 6 7 8 12345678

1357 2468 14725836 15 26 37 48

16385274 1753 2864 18765432

rG , ,

, , , ,

, ,



  (37) 

with 0°, 45°, 90°, 135°, 180°, 225°, 270° and 315°, 

respectively. It has seven flipping motions as  

           
           

         

         

1 5 28 37 46 2 6 13 48 57

3 7 24 15 68 4 8 35 26 17

12 38 47 56 23 14 58 67

34 25 16 78 18 27 36 45

fG , ,

, ,

, ,

,



 (38) 

 

Figure 15. Circular and Elliptical plate (Ex.15 & 16) 

 

 

Figure 16. Annular and Sectorial plate (Ex.17 & 18) 

Therefore, a cyclic polynomial in this case is 

   8 5 4 21
4 5 2 4

16
GZ x x x x x x        

3.4. Plates with Circular Edges 

3.4.1. Solid circular plate (Ex.15) 

Except for cases considering mixed edge conditions, 

circular plate in Fig. 15 has only one edge condition, and so 

 GZ x x                                       (39) 

3.4.2. Solid elliptical plate (Ex.16) 

Again, except for cases with mixed edge conditions, solid 

elliptical plate in Fig.15 has only one edge, and so 

 GZ x x                                       (40) 

3.4.3. Annular circular plate (Ex.17) 

An annular circular plate in Fig.16 has two edges, and 

  2
GZ x x                                       (41) 

3.4.4. Annular circular sectorial plate (Ex.18) 

As shown in Fig.16, the present plate has two circular and 

two straight edges, and one axis of symmetry. There is no 

rotation but one flipping with the axis, i.e., 

     1 2 3 4rG                       (42) 

and  

    1 3 24fG                     (43) 

Therefore, a cyclic polynomial is 

   4 31

2
GZ x x x                         (44) 
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Table 1. Different classes (combinations) of plates (Ex.1-18) versus 

number of edge conditions applied along each edge 

 

4. Numerical Examples and Discussions 

The cyclic polynomials are derived for eighteen plate 

shapes (Ex.1-18) to calculate number of different 

combinations in edge conditions. Table 1 presents a list of 

numbers of different combinations, when one, two, three and 

four edge conditions are applied along each edge. For typical 

plate bending problem, there considered three classical 

conditions, such as free edge (F), simply supported (S) and 

clamped (C) edges.  In this table, the number of conditions 

1, 2, and 3 per edge indicates any choices of one edge 

condition, two conditions and three conditions, respectively, 

chosen from (F,S,C). A case of four conditions implies, say, 

including another condition of elastic support, or a little 

unrealistic sliding edge (slope and shear force both being 

zero).   

   As seen (Ex.6) in the table, the maximum number of 

different combinations are 16, 81 and 256 versus Number of 

conditions x=2, 3 and 4  at each edge, for Asymmetric 

trapezoid among examples of “Plates with four straight 

edges”.  

Similarly, the maximum number is 8, 27 and 64 for 

(Ex.10) in “Triangular plates”, and for most complicated 

case of “Polygonal plates”, it is 30, 498 and 4435 of (Ex.14) 

(regular) Octagonal plate. In contrast, “Plates with circular 

edges” provide smaller number of combinations due to no 

corners (i.e., small number of distinct edges) along curved 

edges except for (Ex.18). 

   In previous report [7] dealing with square and rectangular 

plates only, the number of different combinations was 

numerically demonstrated to be exact. This was possible by 

using a software to accommodate any sets of edge conditions 

for calculating natural frequencies of rectangular plates. 

Such software, however, is not available to the cases of 

plates with general shapes discussed in this paper. 

  An attempt was made next by a trial and error approach to 

figure out different number of combinations for the two 

conditions along each edge, and the two edge conditions are 

represented by F and C in the examples.  

Figure 17 presents seven different combinations (as listed 

in Table 1) of a rhombic plate. As expected, in addition to 

FFFF and CCCC, there is only one case of one C and three 

F (also one F and three C) due to four edges of equal length, 

while CCFF and CFCF are regarded as different since CCFF 

cannot be made from CFCF by any rotation and flipping. 

The next example is taken from (Ex.5) Symmetric 

trapezoid, where only symmetry axis exists. There are 

twelve (as given in the table) possible combinations, as 

shown in Fig.18. When this symmetry is broken as in (Ex.6) 

Asymmetric trapezoid, there are no duplication and the 

number of combinations becomes 24=16, which is the same 

as general quadrilateral plate.  

For (Ex.7) Equilateral triangular plate, there are three 

symmetric axes and the number of combinations is reduced 

significantly by the symmetry to only four, as shown in 

Fig.19. Figure 20 presents the combinations of F and C for 

(Ex.8) Equilateral triangle and only one symmetry axis 

exists. The loss of symmetry from three to one causes the 

combination being increased to six, as observed in the figure. 

  
Figure 17. Combination of two edge conditions (F, C) for rhombic plate 

(Ex.3)  

 1 2 3 4

Ex.1 1 6 21 55

Ex.2 1 9 36 100

Ex.3 1 7 27 76

Ex.4 1 10 45 136

Ex.5 1 12 54 160

Ex.6 1 16 81 256

Ex.7 1 4 10 20

Ex.8 1 6 18 40

Ex.9 1 8 27 64

Ex.10 1 8 27 64

Ex.11 1 8 39 136

Ex.12 1 13 92 430

Ex.13 1 18 198 1300

Ex.14 1 30 498 4435

Ex.15 1 2 3 4

Ex.16 1 2 3 4

Ex.17 1 4 9 16

Ex.18 1 12 54 160

Number of conditions  x  per edge

Plates with four straight edges

Triangular plates

Polygonal plates

Plates with circular edges

        F            F            F

F      F     C       F    C      F

         F         F         C

        F            C            F

C      C     C       F    C      C

         F          F         C

        C

C      C     

        C
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Figure 18. Combination of two edge conditions (F, C) for symmetric 

trapezoidal plate (Ex.5) 

 
Figure 19. Combination of two edge conditions (F, C) for equilateral 

triangular plate (Ex.7) 

Figure 21 presents eight combinations of a regular 

pentagonal plate. For complicated cases of regular polygonal 

plates, it is interesting to observe the balance between the 

increase of edges (increasing the number of combinations) 

and the increase of symmetry axes (decreasing the number).  

It is observed that the increase of edges is more dominant 

than that of symmetry, and in the case of (Ex.14) regular 

octagonal plates, the number of combinations become 

significantly large as 30, 498 and 4435 for x=2,3 and 4, 

respectively.  For such large number of combinations, it is 

impossible to figure out all the possible combinations by a 

trial and error approach.     

 
Figure 20. Combination of two edge conditions (F, C) for isosceles 

triangular plate (Ex.8) 

Figure 21. Combination of two edge conditions (F, C) for regular 

pentagonal plate (Ex.11) 

5. Conclusions 

Polya counting theory was developed in the 1930’s, and 

has been applied to a wide range of combinatorial problems 

in mathematics and chemistry. The present paper extended 

use of the theory to combination of edge (boundary) 

conditions that yield different sets of mechanical 

characteristics, such as stress distribution, deflection, natural 

frequencies and critical buckling loads, that are found in 

isotropic flat plates with various geometry.  

   First, a method for counting was outlined for a case of a 

rectangular plate. Secondly, eighteen examples of different 

plate shapes are introduced, and for each of plate shape, a 

cyclic polynomial was derived. When the number of each 

edge condition is given for 1, 2, 3 and 4, the total number of 

sets of edge conditions is listed for eighteen examples. 

Validity of these results is partially established by showing 

        F            F            F

F      F     C       F    F       F

         F         F         C

        C            F            F

F      F     C       F    C       C

        F         C         F

        C            C            F

C      F     F       F    C       C

         F         C         C

         C            C            C

C      F     C       C    C       C

         C          F         C

F    F C    F C    F

         F         F         C

C     C

         C

F    F C    F F    F

         F         F         C

C     F C    C C   C

         C          F         C

  F     F   C     F   C     F

     

F     F     F     F    C    F

        F         F         F

  C    F  C     F   C    F

F     F     C     F    C    C

       C         C         F

  C     F   C     C

C     C     C     C

        C         C
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actual combinations for rhombic, symmetric trapezoidal, 

equilateral and isosceles triangular, and regular pentagonal 

plates in the case of two edge conditions (free edge and 

clamped edge) applied along each edge. These examples 

collaborated the validity of the present method. It is hoped 

that this combinatorics approach will help in summarizing 

design data books and monographs. 
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