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Abstract 

Free vibration analysis of L-shaped folded thin plates having various boundary conditions is presented. Vibration characteristics of the 

folded plates are analyzed by means of the Ritz method. Displacement functions satisfying the geometric boundary conditions are 

assumed in the form of double power series. The interconnection of plate elements of the folded plates is defined by translational and 

rotational coupling springs. The generalized eigenvalue problem, which is derived by means of minimizing the energy functional, is 

solved to determine the natural frequencies and mode shapes. The accuracy and validity of the present solutions are demonstrated 

through convergence studies and comparisons with the results from the literature and FEM (finite element method) analysis solutions. 

Numerical results are presented for different conditions, such as width ratio, length ratio and the four types of boundary condition.   
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1. Introduction  

Folded plates are widely used as a structural member 

on the fields of transportation, aerospace, ship and 

construction. Therefore, it is important to clarify and 

understand its vibration characteristics from a viewpoint 

of resonance problem in structural design.  

 Vibration problems of the folded plates have been 

studied extensively over the last few decades. Free 

vibration of a cantilever folded plate has been studied by 

the Ritz method [1]. Liu and Huang [2] showed the free 

vibration characteristics of a cantilever folded plate and a 

cylindrical curved plate by using the transfer matrix 

method. Free vibration of completely free folded plates 

considering rotational inertia has been investigated on the 

basis of finite element method [3]. Danial et al. [4] 

indicated the shock response of box-type beam based on 

finite element method. Free vibration of composite folded 

plates considering transverse shear deformation and 

rotational inertia has been analyzed by finite element 

method [5]. In addition, Nayaka et al. [6] presented 

transient response of composite sandwich folded plates by 

the use of finite element method. Most of these researches 

are analyzed by finite element method and detailed studies 

on the accuracy of solutions have been indicated. On the 

other hand, there are few examples of analysis showing 

the variations in the natural vibration characteristics due 

to the difference in dimensions and boundary conditions.   

From the above review, this paper deals with the free 

vibration analysis of L-shaped folded plates by using Ritz 

method and a commercial FEM (finite element method) 

software, SolidWorks simulation. Practically, the strain 

energy and the kinetic energy of the folded plate and the 

elastic energy of the connecting springs are evaluated, and 

the frequency equation is derived by applying the 

minimization condition to the energy functional of the 

folded plate. In numerical example, the accuracy and 

validity of solutions are shown from the convergence of 

solutions and the comparisons with the results in the 

published literature. Furthermore, the effects of 

dimension ratio and boundary conditions on natural 

vibration characteristics such as natural frequencies and 

vibration modes of the folded plates are illustrated and 

discussed.  

2. Theoretical Formulation  

2.1.  Dimensions and displacement field of the folded plate  

Figure 1 shows the dimensions and coordinate system 

of L-shaped folded plate composed of plate-1 and plate-2. 

As shown in the figure, a coordinate system o-x-y-z is 

taken and displacements in the x, y and z directions at 

arbitrary points on the folded plate are represented by u, v 

and w, respectively. Also, the length and width of plate-1 

and plate-2 are denoted by a, b and L, and h is the 

thickness of plates.  

As shown in Fig. 2, plate-1 and plate-2 are connected 

by the translational springs ku , kv , kw and the rotational 

spring krot. Therefore, the relative translational and the 

relative angular displacements are constrained to zero on 

the connection line of plate-1 and plate-2. 
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Figure 1.  Dimensions and the coordinate system of  

L-shaped folded plate  

 

Kirchhoff 's assumption (Line elements perpendicular 

to the middle plane of the plate remain straight and 

perpendicular to the middle plane during deformation) is 

applied to the bending deformation of plate-1 and plate-2. 

In this case, displacements up, vp and wp (p→1: plate-1, 

p→2: plate-2) at arbitrary points of plate-1 and plate-2 can 

be written in Eq. (1), including displacement up0 , vp0 and 

wp0 on the middle plane.  
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2.2.  Potential and kinetic energies  

Assuming that the folded plate is a linear elastic body, 

the stress-strain relation is expressed as Eq. (2). In each 

subsequent equations, suffixes are replaced as p→1, r→x, 

s→y for plate-1 and p→2, r→y, s→z for plate-2. Also, Q i 

j (i, j=1,2,6) in Eq. (2) is the stiffness coefficients 

determined by the modulus of longitudinal elasticity E 

and Poisson's ratio ν, and are given by Eq. (3).  
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Figure 2.  Connection of plate elements defined by  

translational and rotational springs  

 

Considering the harmonic vibration driving at the 

angular frequency ω [rad/s] with respect to the folded 

plate, each displacements on the middle plane can be 

written as follows using the maximum amplitude Up , Vp 

and Wp.  
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The maximum strain energy Pp of plate-1 (p→1) and 

plate-2 (p→2) is evaluated by Eq. (5). In the equation, [A] 

and [D] are stretching and bending stiffness matrix, {εp} 

and {κp} are strain and curvature vector, and components 

of the matrices and the vectors are given as Eqs. (6) and 

(7).  
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Further, the maximum elastic energy Pu, Pv and Pw of 

the translational springs and the maximum elastic energy 

Prot of the rotational spring can be evaluated as follows:  

 

 

 

 

 

(8) 

 

 

 

 

 

 

where ku, kv, kw and krot represent the stiffness of the 

translational and rotational connecting spring distributed 

in the y direction. The maximum potential energy Pmax of 

the folded plate is given by the following equation as the 

sum of the maximum strain energy of plate-1 and plate-2 

and the maximum elastic energy of the connecting spring.  

 

Pmax = P1 + P2 + Pu + Pv + Pw + Prot                             (9) 

 

On the other hand, the maximum kinetic energy Tp of 

plate-1 (p→1) and plate-2 (p→2) is evaluated by Eq. (10) 

with the volume density ρ of the folded plate, and the 

maximum kinetic energy Tmax of the folded plate is given 

by Eq. (11) as the sum of the maximum kinetic energy of 

plate-1 and plate-2. 

 

(10) 

 

 

Tmax = T1 + T2                                                            (11) 

 

2.3.  Derivation of the frequency equation  

Displacement functions of plate-1 (p→1) and plate-2 

(p→2) that satisfy the geometric boundary conditions at 

each edge of the folded plate are given by a series form as 

follows: 
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where Upmn, Vpmn and Wpmn represent unknown 

coefficients. In present analysis, the four kinds of 

boundary edge condition Clamp-1, Clamp-2, Cantilever 

and Free shown in Fig. 3 are taken as a numerical example. 

Also, the admissible functions Fpdmn (p→1, 2 and d→u, v, 

w) in Eq. (12) are given as a power function from Eq. (13) 

to Eq. (16).  

 

 
Figure 3.  Four types of the boundary edge condition  

 

Clamp-1;  

 

 

(13) 

 

 

 

 

Clamp-2;  
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Cantilever;  

 

 

(15) 

 

 

 

 

Free;  

 

(16) 

 

 

Furthermore, the displacement functions given by Eq. 

(12) are substituted into the maximum potential and the 

maximum kinetic energy described by Eqs. (9) and (11). 

Also, applying the minimization condition equation given 

by Eq. (17) to the energy functional L=Tmax−Pmax derives 

the frequency equation as generalized eigenvalue problem 

given by Eq. (18).   
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(a) Clamp-1 (b) Clamp-2

(c) Cantilever (d) Free
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In Eq. (18), [K] and [M] are the stiffness matrix and the 

mass matrix, respectively. By substituting the eigenvector 

{Q} into the displacement functions given by Eq. (12), the 

vibration mode of the folded plates can be obtained. In 

numerical example, the natural angular frequency 

ω[rad/s] is expressed as the nondimensional frequency Ω 

shown in Eq. (19).  

 

 (19) 

 

 

3. Numerical Results and Discussions  

Based on the previous analysis, numerical study will 

be carried out on the free vibration characteristics of the 

L-shaped folded plate. In numerical calculation and FEM 

simulation, the longitudinal modulus of elasticity 

E=207GPa, Poisson's ratio ν=0.3 and the volume density 

ρ=7800kg/m3 are used as the material constant of the 

folded plate. In addition, the numerical results by 

SolidWorks simulation which is a commercial FEM 

(finite element method) software are also presented within 

each tables and figures.  

Table 1 shows the convergence study of 

nondimensional frequency Ω with respect to variations of 

the number of terms I×I in displacement functions given 

by Eq. (12) and the connecting spring stiffness ku, kv, kw 

and krot for the folded plate having Clamp-1 boundary 

condition. Nondimensional frequencies Ω converge with 

four significant figures in terms of the number of terms 

I×I =12×12 and spring stiffness ku = kv =kw =krot =1011 for 

each mode number. Also, nondimensional frequencies Ω 

are consistent with the results given by SolidWorks 

simulation with three significant figures. Therefore, the 

number of terms I×I=12×12 is employed in the 

displacement functions given by Eq. (12), and all spring 

stiffness are set to 1011 in present calculations.  

Table 2 shows comparisons of nondimensional 

frequency Ω of the folded plate having Cantilever 

boundary condition. In the table, Irie et al. [1] show the 

analytical solutions by the Ritz method, Liu and Huang 

[2] and Haldar and Sheikh [5] give results by the finite 

element method. In particular, the transverse shear 

deformation is taken into account on the bending 

deformation of the folded plate in [5].  

Table 3 shows comparisons of the nondimensional 

frequency Ω with respect to the folded plate with Free 

boundary condition. Allman [3] gives experiment results 

and Nayak et al. [6] present analytical solutions by the 

finite element method considering transverse shear 

deformation and rotational inertia in free vibration 

analysis of the folded plates.  

In Tables 2 and 3, the present solutions are in good 

agreement with the results by the references, and it is 

shown that connecting conditions of translation and 

rotation between plate-1 and plate-2 are sufficiently 

satisfied by using the connecting spring. Also, the 

accuracy and validity of the present solutions are verified 

through comparing with results from references. 

 

Table 1. Convergence study of nondimensional  

frequencies Ω  [ a/b=1, L/a=1, h/a=0.01, Clamp-1 ]  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2.  Comparisons of nondimensional frequencies Ω  

[ a/b=1, L/a=2, h/a=0.04, Cantilever ]  

 

Table 3.  Comparisons of nondimensional frequencies Ω  

 [ a=0.28m, b=0.428m, L=0.215m, h=0.00121m,  

ρ=7850kg/m3, Free ]  

 
 

Figures 4 and 5 show vibration modes with respect to 

variation in the length ratios a/b for the folded plates 

having Clamp-1 and Free boundary conditions, 

respectively. Nondimensional frequency ΩRitz and ΩFEM 

by present analysis and SolidWorks simulation are shown 

under each vibration modes. The folded plates having 

Clamp-1 with the constraint of the edge shows higher Ω 
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than the plates having Free boundary condition. In any of 

the boundary conditions, nondimensional frequencies Ω 

increase as the length ratio a/b increases. Also, vibration 

mode shape of the folded plate has a beam type mode 

when a/b=0.1, and a plate type mode when a/b=10.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.  Vibration modes of L-shaped folded plates  

[ L /a =1, h /a =0.01, Clamp-1 ]  

 

 
Figure 5.  Vibration modes of L-shaped folded plates 

[ L /a =1, h /a =0.01, Free ]  

 

 
Figure 6.  Vibration modes of L-shaped folded plates  

[ a /b =1, h /a =0.01, Clamp-1 ]  

 

 
Figure 7.  Vibration modes of L-shaped folded plates  

[ a /b =1, h /a =0.01, Free ]  

 

Figsures 6 and 7 give vibration modes with respect to 

variation versus the width ratio L/a for the folded plates 

with Clamp-1 and Free boundary conditions. In the both 

of the boundary conditions, nondimensional frequencies 

Ω decrease as the width ratio L/a increases. The reduction 

rate of Ω with respect to the increase in the width ratio L/a 
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is  larger  in  the  folded  plate  having Clamp-1 than in the 

 

 
Figure 9.  Variations of nondimensional frequencies Ω  

versus the width ratio for L-shaped folded plates  

[ a/b=1, h/a=0.01 ]  
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Figure 8.  Variations of nondimensional frequencies Ω  

versus the length ratio for L-shaped folded plates  

[ L/a=1, h/a=0.01 ]  
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is  larger  in  the  folded  plate  having Clamp-1 than in the 

folded plate having Free boundary condition without 

constraint on the edge side. The folded plate has the beam 

type vibration modes when L/a=0.1 and 10, and shows the 

plate type vibration modes when L/a=2, because plate-1 

and plate-2 become the flat plates in the case of L/a=2. 

Figure 8 shows the variations of the nondimensional 

frequency Ω with respect to the length ratio a/b for the 

folded plates with Clamp-1, Clamp-2, Cantilever and 

Free boundary conditions. In the figure, the solid line 

shows the present solution, and the small circles show the 

solutions by SolidWorks simulation. The folded plate 

having Clamp-1, which has constraint on four sides gives 

high Ω. Also, in any boundary condition, Ω show an 

increasing tendency as the length ratio a/b increases. In 

addition, veering points which frequency curves of 

different modes approach each other are observed in 3rd 

and 4th mode of Clamp-1, 2nd and 3rd mode of Clamp-2, 

4th and 5th mode of Cantilever, 1st and 2nd mode of Free. 

Figure 9 shows the variations of the nondimensional 

frequency Ω with respect to the width ratio L/a for the 

folded plates with the four kinds of boundary condition  

Clamp-1, Clamp-2, Cantilever and Free. On the folded 

plates having Clamp-1 and Cantilever, high Ω is given in 

the range of the width ratio L/a<1. Also, in any boundary 

condition, Ω show a decreasing tendency as the width 

ratio L/a increases. On the other hand, the variations in the 

fundamental frequency with respect to the width ratio L/a 

is scarce in Clamp-2 and Free where there is no constraint 

on the sides.   

 

 

 

 

 

4. Concluding Remarks  

In this study, the free vibration analysis of the L-

shaped folded plates has been formulated by applying the 

Ritz method. Several perceptions obtained through 

discussion considering numerical examples are as 

follows.  

On natural frequencies of the L-shaped folded plates, 

accuracy and validity of present solutions were verified 

from the comparisons with results by FEM software and 

literature. Also, it was shown that connecting conditions 

of translation and rotation between two plates are satisfied 

by using the connecting spring. In addition, vibration 

modes of the folded plates present a beam type and a plate 

type shape according to the length ratio and the width 

ratio. Regarding the variations of frequency curves, for 

each boundary condition, natural frequencies show an 

increasing as the length ratio increases and a decreasing 

as the width ratio increases.  

It is expected that present numerical results are useful 

for the optimization design on vibration problems of the 

folded plates.  
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