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Abstract

Comprehensive and accurate numerical results are presented for natural frequencies of thin isotropic, simply supported rectangular
plates additionally constrained by rotational elastic springs on the edges. For complete coverage of combination, the number of all the
combinations in boundary conditions of simply supported, rotationally constrained and clamped is calculated by Polya counting theory,
and all sets of frequency parameters are tabulated for the lowest five modes. The Ritz method, along with displacements assumed in
special polynomial form with boundary index, is used to include the strain energy stored in the rotational springs. Convergence and
comparison studies are made to demonstrate accuracy of tabulated results, and the frequency parameters are listed for the fifteen sets of
boundary conditions and various spring stiffness of the square plates. Some results are also presented for rectangular plates.
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1. Introduction

Vibration of flat plates has been an important research
topic in mechanical, aeronautical and other structure-
oriented fields in engineering. A large number of
publications has appeared since a monograph was
compiled by Leissa [1] in 1969, and some good textbooks
were released, for example a book written by Gorman [2]
on plate vibration. Among various plate applications, the
most typical planform is a rectangle, and Leissa [3]
published a paper on frequency parameters to cover all
combinations of free, simply supported and clamped
edges. These results are updated by the present author in
improved accuracy [4].

For rectangular plates elastically constrained along
edges, a reasonable number of papers were published
because of the importance that plate structural elements are
usually attached elastically to the main structure. Up to the
year of 2000, Laura and his co-workers published some
papers [5-8] to obtain lower frequencies, and other authors
[9,10] dealt with plates with springs. A series of notable
works were written by Gorman [11-15] on vibration of
rectangular plates with elastic edge supports by using a
famous method of the superposition method.

In the 2000’s, Li [16] and Li [17] presented solutions for
predicting frequencies of rectangular plates with generally
restrained edges. Eftekhari and Jafari [18] derived a
solution for variable thickness plates with elastic edges.
Recently, Wan [19] presented an original analysis on the
topic, and Zhang and others [20] presented in 2021 some
results on plates with free and opposite two adjacent
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elastic edges. Leng and others [21] studied in 2022
vibration of plates with one corner free and its edges
rotationally-restrained. Thus, up to now, the vibration of
rectangular plates with elastic edge springs has drawn
attentions from researchers, but the purpose of all the
previous papers seems to propose analytical methods, and
the frequency data presented are still limited to some
specific cases.

The present author therefore undertakes to compile
comprehensive and organized sets of frequency
parameters for the problem, and published already one
paper [22] on the free plates elastically supported by
translational springs. In this paper, an analysis is extended
to simply supported rectangular plates with rotational
spring on the edges. These two papers fully encompass
elastically supported rectangular plates in a way to cover
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Figure 1. Simply supported rectangular plate with uniform
rotational sprinas on the edaes and the coordinate svstem
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from a totally free to a simply supported plate [22] and
from there to a totally clamped plate (present paper).

2. Methodology
2.1. Combination of boundary conditions

Figure 1 illustrates an isotropic rectangular plate simply
supported along four edges and elastically constrained by
additional uniform rotational spring at the edges, and this
edge condition is denoted by RS (Rotational Spring) in the
paper. The dimension of the plate is given by axbxh
(thickness) and the origin of the coordinate system is
located in the center. Starting from the left hand edge (x=
-a/2), four edges are labelled as Edge(1), Edge(2), Edge(3)
and Edge(4) in counter-clock-wise, and each spring can
have different value of rotational spring stiffness.

When one considers combination of the classical
boundary conditions (F, S, C) in an isotropic square plate
(a/b=1), there are twenty-one combinations to give distinct
sets of the identical natural frequencies and this number
can be theoretically determined by use of Polya counting
theory [23,24]. In this theory, the number of combinations
is determined by a cyclic polynomial

Z.(2)== (z +27°% +37° +22)

where Zg is the number of distinct combinations to show
independent sets of different natural frequencies,
denotes “permutation”, and z is the number of dlfferent
boundary conditions considered at each edge. For example,
when one considers three boundary conditions (Free (F)
Simple support (S), Clamp (C) ), the number “three”
inserted in Eq.(1) as Z(3)=21.

In this paper, three combinations of S, RS and C are
considered that end up with Z;(3)=21 , but the
combinations only by S and C (i.e., z=2) were already
covered [4] and remaining fifteen cases

Z.(3)-Z,(2)=21-6=15

are treated in numerical examples, as shown as Ex.1-15 in
Fig. 2.

For an isotropic rectangular plate (a/b#1), a cyclic
polynomial becomes

Z.()== (z +2z7° +z)

and the number of combinations increases up to
Z.(3)=36
for the combination of S, RS and C [23,24].

2.2. Ritz method considering rotational edge springs

A semi-analytical solution is employed here as in
Refs.[4,22,23] from the method of Ritz under the classical
thin plate theory. The relation between stress and strain in
the plate is

q

X Q. Q, O &y
o, = Q, Q, O &, (5)
Txy 0 0 QGG 7/ Xy

with the matrix elements given by

E
E _ = =
T

(6)

where E is Young’s modulus, G is a shear modulus and v
is a Poisson’s ratio. When Eq.(5) is integrated through the
thickness after multiplying a thickness coordinate z, one
gets moment resultants
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Figure 2. Fifteen numerical examples dealt in the paper

(RS: Rotational Spring, S: Simple support, C: Clamp)
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If one considers the small amplitude (linear) free
vibration of plate, the deflection w may be written by

w(X, y,t) =W (x, y)sin ot (8)

where W is the amplitude and o is a radian frequency of
the plate. Then, the maximum strain energy due to the
bending is expressed by

1 - Dll D12 0
UaXZEJ‘J.A{K‘} D, D, O |{xldA (9
0 0 D,

where the Dj; are the bending stiffnesses and {K} is a
curvature vector

oW oaw L otw ]’
W= o Yoy (10)

The maximum Kinetic energy is also given by
_ 1 2 2
Tow = Pho [] w2dA (11)

where p [kg/m®] is the mass per unit volume.
For the sake of simplicity, non-dimensional quantities
are introduced as

2
5— .77— y

a=alb (aspect ratio), dj =D; /D
3

T 12017

(non-dimensional coordinates),

(reference stiffness) (12)

{ h
Q= wa’ % (frequency parameter)

Next, we consider the energy stored in the elastic
restraints (rotational elastic springs). The energy equation
is written as

u, 1
{ b/2 k. @W( al2, y)} y+J-a/z er{@W(x,b/g)T "
—b/2 —ai2 oy
+J-bl2 kr3|:8W (a/2,y):| dy J-alz r4|:8W(x,b/2):|2 dx}
—b/2 X ar2 oy

(13)
where k;i (i=1,2,3,4) are stiffness of rotational springs in
unit [Nm/m]=[N] per unit edge length. This energy is
added to the plate bending energy (9).

The next step in the Ritz method is to assume the
amplitude as
M-1 N-1
WED =Y D AmXn €)Y, (1) (14)

m=0 n=0
where Am, are unknown coefficients, and X, (¢) andY,, (17)

are the functions modified so that any kinematical
boundary conditions are satisfied at the edges [4,22,23].

After substituting Eq.(14) into these energies, the
stationary value is obtained by

(m=0,12,.(M-1);n=0,12,..(N-1)) (15)

ax _(Umax +Ur,max)} =0

Then the eigenvalue equation that contains a frequency
parameter Q is derived as

M-1 N-

AN

[dnl (2200) +a2d12(| (2002) |(0220))+a'4d22| (0022)

>

m=0 n=0

2
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(16)
where an integral | is the products

(pars) (Pd), ,(rs)
Imﬁnn =@ " Pon (17)

of the two integrals defined by
(@y_
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and (Spring term) is the line integral along an edge.
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with nondimensional rotational constant
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Equation (16) is a set of linear simultaneous equations in
terms of the coefficients Amn, and the eigenvalues Q may
be extracted by using existing computer subroutines.

The present approach uses simple polynomials
Xm(g) _ gm (l+§)bd (1_§)bc3
Y, () =" (1+n)" (1-n7)"" (21)

(bcl=bc2=bc3=bc4=1) to represent a simply supported
plate as a base plate, and the integrals (18)(19) can be
exactly calculated.

2.3. Finite element formulation of rotational spring

A finite element is newly developed to include the effect
of rotational springs distributed along the edges, and the
finite element code (FEM code) is developed by the author
to compare the result with the Ritz solution to establish
accuracy of both methods. Formulation of plate bending
element and kinetic element are already explained in
Refs.[22,25]. Here only formulation of the edge spring
element is shown.
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The amplitude inside the element including boundary
is assumed by

W (x,y)={P}{a} (22)
where {P} and { « } are (T: transpose)
{P} :{1,x,y,x2 ,xy,yz,xs,x2y,xy2,y3,x3y,xy3} (23)
{a} = {al,az 10330y, O, Ol Oy Oy, Oy, Q1 Oy, Ol }T

(24)
The displacement at node i is defined as

(G = (ow o) (@w i)} e

and the displacements of four nodes labelled as i,j,k and |
in a rectangular element can be expressed as

(=l o a af @)

Using [C] which is obtained by substituting Eq.(26) into
the four sets of node coordinates, W is transformed as

W (x,y)={P}[C]" {5} 27)

For example, when the rotational spring is distributed
uniformly along Edge(2) or Edge(4) at Y=Y , equation

(27) is substituted into the second or fourth term of Eq.(13)
and

_J-a;/z2 rl[ﬁw(x Y)J X=%{5E}T|:Kri:|{§e}
(28)

(i=2,4) is obtained, where [K;] is the i-th finite element of
rotational edge spring

K] =ka[cT (I{apg,y)}T{ap (x, y)} J[Cl]

(29)

with P(x,y) being a function of x at fixed y=-b/2 or

y=0b/2 for Edge(2) and Edge (4), respectively. Spring
finite elements along Edge(l) and Edge(3) can be
formulated in the same manner.

3. Numerical examples and discussions
3.1. Convergence and comparison of the solution

It is assumed in numerical examples that the material is
isotropic with Poisson’s ratio v=0.3. Young’s modulus E
and Poisson’s ratio v are included in the dimensionless
frequency parameters Q in Eq.(12).

Figure 2 illustrates numerical examples Ex.1-Ex.15 with
different degree of elastic constraints by rotational springs,
and such edge (i.e., simply supported edge with uniform
rotational spring attached) is denoted by “RS” (Rotational
Spring). In case that the example plates have plural
rotational springs on the edges, it is assumed that all the
springs have the same degree of constraint.

Table 1 Convergence of (a) Ritz solution and (b)FEM solution
for square plates constrained by rotational spring (Ex.1)

0, Q, Q, Q, Q.
(a) Present Ritz solution
ki F=100

6x6  23.37 51.44 57.75 85.28 101.5
8x8  23.37 51.44 57.74 85.27 100.1
10x10 23.37 51.44 57.74 85.27 100.1

k. *=10000
6x6  23.64 51.67 58.65 86.14 101.7
8x8 23.64 51.67 58.64  86.13 100.3
10x10 23.64 51.67 58.64 86.13 100.3

(b) Present FEM solution

k. *=100
10x10 23.24 50.98 57.31 83.61 99.16
15x15 23.31 51.21 57.53 84.47 99.61
20x20 23.33 51.31 57.62 84.81 99.80

k,*=10000
10x10 2351 51.26 58.21 84.63 99.55
15x15 23.58 51.45 58.42 85.32 99.83
20x20 23.62 51.54 58.51 85.65 100.0

Table 2 Comparison of frequency parameters for square plates (Ex.15)

Q, Q, Q, Q, Qs
k=1
Ritz 21.502 51.191 51.191 80.828 100.58
[17] 21.500 51.187 51.187 80.816 100.58
k=10
Ritz 2850 60.22 60.22 90.81 111.19
[17] 2850 6022 6022 90.81 111.19

[16] 2850 60.22 60.22 90.81 111.2

k* =100
Ritz 34671 70781 70.781 104.45 127.03
[17] 34671 70780 70780 104.45 127.02
[16] 3467 7078 7078 1045  127.0
ki *=1000
Ritz 35843 73.104 73.104 107.79 131.06
[17] 35842 73103 73103 107.79 131.06

S ulg) ()

in the calculation, although they can take any different
values as needed.

In the figure, Ex.1-6 are square plates constrained on
Edge(1) by one rotational spring, and have different
combinations of RS-S-S-S, RS-C-S-S, RS-S-C-S, RS-C-
C-S, RS-C-S-C and RS-C-C-C, respectively, on the
remaining three edges of Edge(2)-Edge(4). Similarly,
Ex.7-12 are plates constrained on two edges constrained
by two rotational springs and have different combinations
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Table 3 Frequency parameters Q of square plates
(Ex.1, RS-S-S-S, v=0.3)

Table 5 Frequency parameters Q of square plates
(Ex.3, RS-S-C-S, v=0.3)

kr* Q. Q, Q4 Q, Qs kr® Q, Q, Q; Q, Qs
(0) Ritz 19.74 49.35 49.35 78.96 98.70 (0) Ritz 23.65 51.67 58.65 86.13 100.3
S-S-S-S FEM  19.71 49.24 49.24 78.54 98.47 S-S-C-S FEM 23.61 51.53 5852 85.63 99.99
Ritz 20.18 49.53 50.09 79.43 98.79 1 Ritz 24.21 5191 59.44 86.67 100.4
FEM 20.16 49.43 49.99 79.01 98.56 FEM 24.18 51.77 59.31 86.16 100.1
10 Ritz 21.95 50.43 53.74 81.95 99.31 10 Ritz 26.56 53.08 63.48 89.57 101.0
FEM 21,92 50.32 53.63 81.53 99.07 FEM 26.51 5293 63.35 89.06 100.7
100 Ritz 23.37 51.44 57.74 85.27 100.1 100 Ritz 28.55 54.42 68.22 93.54 102.0
FEM 23.33 51.31 57.62 84.81 99.80 FEM 28,50 b54.25 68.07 92.98 101.6
Ritz 23.64 51.67 58.64 86.13 100.3 Ritz 28.95 54.74 69.32 94.57 102.2
10000 10000
FEM 23.62 51.54 5851 85.65 100.0 FEM 28.89 5457 69.16 94.00 101.9
(infinity) Ritz 23.65 51.67 58.65 86.13 100.3 (infinity) Ritz 28.95 54.74 69.33 94.59 102.2
C-S-S-S FEM 23.61 51.53 5852 85.63 99.99 C-S-C-S FEM 28.89 54.55 69.17 93.96 101.9
120 120
S 100 @eereres - @rererenn eennne @cerenes -04@ E 100 PR PRV PR PR @eenrnann ° <@
= @ = === =® —
£ __--.-----.-----.4@ 5 e-mmmom—-=T " L
£ 80 ommm—om———— s 80
= o] 3 e — e T3]
g 0 3"‘.'—‘_".4 Q3 § 60 o— =" o o e
:’.}- — T G - - @ - = 0= = 0 — 54 O == = O = = O — = - - ~ 02
g .| — 102] g 19z]
20 L1 20 —_— <:|'E|
o o
SSSsS 1 10 100 10000 CSSS kr* sscCs 1 10 100 10000 CSCS kr*
Figure 3 Variation of frequency parameters of square Figure 5 Variation of frequency parameters of square
plate with spring stiffness (Ex.1). plate with spring stiffness (Ex.3).
Table 4 Frequency parameters Q2 of square plates Table 6 Frequency parameters Q of square plates
(Ex.2, RS-C-S-S, v=0.3) (Ex.4, RS-C-C-S, v =0.3)
kr* Q. Q, Q; Q, Qs kr* Q, Q, Q3 Q, Qs
(0) Ritz 23.65 51.67 58.65 86.13 100.3 (0) Ritz 27.05 60.54 60.79 92.84 114.6
S-C-S-S FEM 23.61 51.53 5852 85.63 99.99 S-C-C-S FEM 27.00 60.37 60.62 92.23 114.2
Ritz 24.02 52.38 58.80 86.57 101.1 1 Ritz 27.55 60.84 61.45 93.33 114.7
FEM 23.98 52.24 58.67 86.06 100.8 FEM 27.50 60.68 61.28 92.72 114.4
10 Ritz 25.54 55.89 59.57 88.89 105.9 10 Ritz 29.63 61.86 65.35 96.04 115.3
FEM 25.49 5575 59.43 88.38 105.6 FEM 29.57 61.69 65.19 95.43 115.0
100 Ritz 26.80 59.75 60.47 92.02 112.8 100 Ritz 31.46 63.04 69.98 99.79 116.1
FEM 26.75 59.60 60.32 91.46 1125 FEM 31.39 62.85 69.80 99.13 115.8
10000 Ritz 27.05 60.53 60.78 92.83 114.5 10000 Ritz 31.82 63.33 71.06 100.8 116.4
FEM 27.00 60.38 60.63 92.26 114.2 FEM 31.76 63.13 70.88 100.1 116.0
(infinity) Ritz 27.05 60.54 60.79 92.84 114.6 (infinity) Ritz 31.83 63.33 71.08 100.8 116.4
C-C-S-S FEM 27.00 60.37 60.62 92.23 114.2 C-C-C-S FEM 31.75 63.11 70.88 100.1 116.0
e .- @ ettt @ooecees - <f| Qs 120 @vesesece @cscscse @esessses @escoscce @cecscne ° — Os
€ 100 | eemrmat® Iy B iy  N=Y8
R R b g smmmemnTe
o e 80
J= B b AT
P o | mompmrmee—e— Ty A i | TN
:‘j 40 = 40
— Lo ]
o) o
scss 1 10 100 10000 CCSS kr* sccs 1 10 100 10000 CCCS kr*

Figure 4 Variation of frequency parameters of square
plate with spring stiffness (Ex.2).

Figure 6 Variation of frequency parameters of square
plate with spring stiffness (Ex.4).
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Table 7 Frequency parameters Q of square plates
(Ex.5, RS-C-S-C, v =0.3)

Table 9 Frequency parameters Q of square plates
(Ex.7, RS-RS-S-S, v=0.3)

kr” Q, Q, Q3 Q, Qs k™ Q, Q, Qs Q, Qs
(0) Ritz  28.95 5474 69.33 9459 1022 S-S-S-S Ritz 19.74 49.35 49.35 78.96 98.70
S-C-5-C FEM 2889 5455 69.17 9396 1019 1 Ritz 20.62 50.27 50.27 79.89 99.64
1 Ritz  29.26 55.41  69.46 94.98 103.0 10 Ritz 23.96 54.67 5479 84.83 105.0
FEM 2920 o525 0939 9435 1027 100 Ritz 26.55 59.44 59.68 91.19 1125
10 T aee BT T2 o re 10000 Ritz 27.05 60.53 60.78 92.82 114.5
FEM 30.46 5856 69.95 96.49 107.4 : : : : :
100 Ritz 31.61 62.47 70.89 100.0 114.5 C-C-S-S Ritz 27.05 60.54 60.79 92.84 114.6
FEM 31.54 62.27 70.70 99.35 114.2
L0000 Ritz 31.82 63.32 71.07 1008 116.3 Table 10 Frequency parameters Q of square plates
FEM 31.75 63.12 70.89 100.1 116.0 (Ex.8, RS-RS-C-S, v=0.3)
(infinity) Ritz 31.83 63.33 71.08 100.8 116.4 P Q, Q, Q, Q, Q,
C-C-S-C FEM 3175 6311 7088 1001 1160  'g.5.c.S Ritz 23.65 51.67 58.65 86.13 100.3
=5 1 Ritz 2458 52.62 59.59 87.09 101.2
N G | E-Y 10 Ritz 2825 57.19 6433 92.23 106.6
- e — 100 Rtz 3124 6218 69.79 99.0 1143
g — > —o— == O3] 10000  Ritz 31.82 63.32 71.06 100.8 116.3
§ 60| ___g-me-""T" """ =] .
H . C-C-C-S Ritz 31.83 63.33 71.08 100.8 116.4
20 <:I'E Table 11 Frequency parameters Q of square plates
o (Ex.9, RS-RS-C-C, v=0.3)
SCsC 1 10 100 10000 CcCsC kr*
kr* Q, Q, Q, Q, Qs
Figure7Variatior-loffre:quen-cyparametersofsquare S.SC-C Riz 2705 6054 6079 9281 1146
plate with spring stfiness (£x.5). 1 Ritz 28.04 61.54 61.72 93.82 1155
Table 8 Frequency parameters Q of square plates 10 Ritz  32.00 66.46 66.48 99.14 121.0
(Ex.6, RS-C-C-C, v =0.3) 100 Ritz 35.32 72.07 72.07 106.3 129.3
hr* Q, Q, Q, Q, Qs 10000  Ritz 35.98 73.38 73.38 108.2 131.6
(0) Ritz 31.83 63.33 71.08 100.8 116.4 C-C-C-C Ritz 35.99 73.39 73.39 1082 131.6
S-C-C-C FEM 31.75 63.11 70.88 100.1 116.0
1 Ritz 32.25 64.06 71.25 101.2 117.2 Table 12 Frequency parameters Q of square plates
FEM 32.17 63.85 71.05 100.5 116.8 (Ex.10, RS-S-RS-S, v=0.3)
10 Ritz 34.04 67.84 72.11 103.8 122.2 hr* Q, Q, Q, Q, Qs
FEM 3397 67.63 71.90 1030 121.8 S-S-S-S  Ritz  19.74 49.35 49.35 78.96 98.70
100 Ritz 9565 72.33 7314 1075 129.7 1 Ritz 20.64 49.72 50.83 79.90 98.89
FEM 35.57 72.10 72.91 106.5 129.3
oo Nz 3598 7338 7339 1082 1316 10 Ritz 2451 51.65 5825 85.09 100.0
FEM 3590 73.15 73.16 107.4 131.1 100 Ritz 28.17 54.11 67.13 92.52 101.7
(infinity) Ritz 35.99 73.39 73.39 108.2 131.6 10000  Ritz 28.94 54.74 69.30 9456 102.2
C-C-C-C FEM 3589 73.15 7315 1074 1311 C-S-C-S Ritz 2895 5474 69.33 9459 102.2
e oeneres @ renann ° <E| Table 13 Frequency parameters Q of square plates
EER :'_"_'::____.____‘_____.<@ (Ex.11, RS-C-RS-S, v=0.3)
glzz ' P fr* o, Q, 0, 0, Q.
§ | SEISEEESTTTTT " o0:] S-C-S-S Ritz 2365 51.67 5865 86.13 100.3
£ B 1 Ritz 24.40 53.09 5896 87.00 101.9
20 o] 10 Ritz 27.78 60.25 60.61 91.81 111.6
o 100 Ritz 31.10 62.76 68.92 98.81 115.9
Seee b 10 100 10000 cece ke 10000 Ritz 31.82 63.32 71.05 100.8 116.4
Figure 8 Variation of frequency parameters of square C-C-C-S Ritz 31.83 63.33 71.08 100.8 116.4

plate with spring stiffness (Ex.6).
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of simple support (without spring) and clamped edges.
Ex.13 and 14 have three edges with rotational springs, and
Ex.15 is a simply supported plate with all edges
constrained by rotational springs.

Convergence study is presented in Table 1 for frequency
parameters in Ex.1 obtained by the present (a) Ritz method
and (b) finite element method. In both sets of results, non-
dimensional spring constants are assumed as kr*=100 and
10000. In (a), the number of series terms in Eq.(14) are
taken as MxN= 6x6, 8x8 and 10x10, and very fast
convergence from above (i.e., this solution is upper-
bounded) is observed within the four significant figures. In
(b), the number of finite elements is taken as 10x10, 15x15
and 20x20, and slightly slower convergence from below is
observed as compared to the Ritz solution. This non-
conforming finite element solution seems to give lower
bound in this problem, but no theoretical proof is possible
due to use of this non-conforming element. The
discrepancy between the Ritz 10x10 solution and FEM
20x20 solution is 0.60 percent in the maximum and 0.29
percent on the average. Generally both different solutions
agree well.

Table 2 presents a comparison in Ex.15 (uniformly
constrained on the four edges) between Refs.[16,17] by Li
and co-workers and the present Ritz result. The present
solution here is given in the five significant figure to match
to the result [17], and clearly they show excellent
agreement. Thus in both Tables 1 and 2, validity of the
present two methods is well established.

3.2. Frequency parameters of square plates

Tables 3-8 present pairs of frequency parameters
obtained by the two different methods for the lowest five
modes of square plates (a/b=1) in Ex.1-EX.6, respectively.
The degree of rotational springs is increased as k=0
(totally simply supported edge), 1, 10, 100, 10000 (almost
clamped). In the limiting case of k/'=co (infinity), the
accurate values are available by replacing ki"=co (S) with
clamped edge (C). It is seen in common that the
frequencies are monotonically increasing, as RS edge
starts from simple support (k,"=0) to strongly constrained
edge k,"=10000=10% and this degree of k,'=10* virtually
coincide with the clamped edge.

Such monotonical increases in frequency can be seen in
the accompanying Figs.3-8 for Ex-1-EX.6, respectively.
Some interesting observations are made in each figure. For
example, in Fig.3 (Table 3), the second and third
frequencies of S-S-S-S plate are identical (degenerated
mode of a square plate) for k=0, but they become
separated as k" being increased and become the second
and third frequencies of C-S-S-S plate. In contrast in Fig.8
(Table 8), two distinct second and third frequencies of S-
C-C-C plate gradually approach each other and eventually
merge into one degenerated mode.

Tables 9-17 list the lowest five frequencies obtained by
the Ritz method only, when needed, they can be plotted in
figures by using Excel and other software. When one needs
frequency value for intermediate stiffness, one can
introduce interpolation curves with respect to the stiffness
values of k=0, 1, 10, 100, 10000 and oo.

Table 14 Frequency parameters Q of square plates
(Ex.12,RS-C-RS-C,v=0.3)

kt* Q, Q, Q; Q, Q5
S5-C-S-C Ritz 2895 54.74 69.33 9459 102.2
1 Ritz 29.57 56.08 69.59 9537 103.9
10 Ritz 3242 6291 71.01 99.80 1133
100 Ritz 35.33 71.29 72.89 106.3 127.7
10000  Ritz 3598 73.37 7339 1082 131.6
C-C-C-C Ritz 35.99 7339 7339 1082 1316

Table 15 Frequency parameters Q of square plates
(Ex.13, RS-RS-RS-S, v=0.3)

kt* Q. Q, Q; Q, Q5
S-5-S-S Ritz 19.74 4935 4935 78.96 98.70
1 Ritz 21.07 50.46 51.01 80.36 99.74
10 Ritz 26.33 55.86 59.17 87.87 105.6
100 Ritz 30.88 61.90 68.73 98.0 114.1
10000  Ritz 31.81 63.31 71.05 100.8 116.3
C-C-C-S Ritz 31.83 6333 71.08 100.8 116.4

Table 16 Frequency parameters Q of square plates
(Ex.14, RS-RS-RS-C, v=0.3)

ki* Q, Q, Q; Q, Qs
S-S-S-C  Ritz  23.65 51.67 58.65 86.13 100.3
1 Ritz 2495 53.32 59.75 87.52 102.1
10 Ritz 30.29 61.45 65.30 95.04 112.2
100 Ritz 35.00 71.03 71.82 1054 1275
10000  Ritz 3598 73.37 73.37 108.2 1315
C-C-C-C Ritz 35.99 7339 7339 1082 1316

Table 17 Frequency parameters Q of square plates
(Ex.15, RS-RS-RS-RS, v=0.3)

kr* Q, Q, Q; Q,4 Q5
S-S-S-S Ritz  19.74 49.35 49.35 78.96 98.70
1 Ritz 21.50 51.19 51.19 80.83 100.6
10 Ritz 2850 60.22 60.22 90.81 111.2
100 Ritz 34.67 70.78 70.78 1045 127.0
10000 Ritz 3597 7336 73.36 108.2 1315
C-C-C-C Ritz 35.99 73.39 7339 1082 1316

3.3. Frequency parameters of rectangular plates

Plate planform other than a square is considered to see
the effect of aspect ratios. Tables 18 and 19 are sets of the
lowest five frequencies for aspect ratios of a/b=2/3 and 1.5,
respectively. Examples are taken form Ex.1 (one edge
constrained by rotational spring), Exs.7 and 10 (two edges
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Table 18 Frequency parameters Q of rectangular plate
(alb=2/3,v=0.3)

(alh=15, v=0.3)

Table 19 Frequency parameters  of rectangular plate

krt Q, 0, 0 Q, O, krt Q, 0, 0 Q. Q

Ex.1 RS-5-5-S Ex.1 RS-S-5-S
0 Ritz 1426 27.42 4387 49.35 57.02 $-S-S-S Ritz 3208 61.69 9870 111.0 128.3
1 Ritz 1486 27.74 4470 4953 57.67 1 Ritz 3236 6228 98.79 1118 128.6
10 Rtz 17.05 2914 4869 5043 60.93 10 Ritz 3360 6535 99.31 1162 130.3
100 Ritz 1862 3041 5144 5286 64.72 100 Ritz 3479 69.03 1001 1228 133.0
10000 Ritz 1890 30.66 5167 53.77 6561 10000 Ritz 3505 69.90 1003 124.6 133.8
C-S-S-S Ritz 1890 30.67 51.67 53.78 65.62 C-S-S-S Ritz 3505 69.91 1003 1246 1338

Ex.7 RS-RS-S-S Ex.7 RS-RS-S-S

S-S-S-S Ritz 14.26 27.42 4387 4935 57.02 $-S-S-S Ritz 32.08 61.69 9870 111.0 128.3
1 Ritz 1503 2812 44.76 50.03 57.86 1 Ritz 3329 6278 1001 1121 129.6
10 Rtz 17.73 31.03 49.00 53.28 61.98 10 Rtz 3863 6831 1078 1180 137.1
100 Ritz 1961 3352 5340 56.74 66.68 100 Ritz 4377 7491 1192 1269 149.0
10000 Ritz 1995 34.02 5435 5750 67.78 10000 Ritz 44.88 7653 122.3 1294 1525
C-C-S-S Ritz 1995 3402 5436 5751 67.79 C-C-S-S Ritz 4489 7655 1223 1204 1525

Ex.10 RS-S-RS-S Ex.10 RS-S-RS-S

S-S-S-S Ritz 1426 27.42 4387 4935 57.02 $-S-S-S  Ritz 3208 6169 9870 1110 1283
1 Ritz 1547 2807 4552 49.72 5831 1 Ritz 3264 6288 9889 1126 128.9
10 Rtz 2022 3114 5165 5358 64.99 10 Rtz 3536 69.17 99.98 121.4 132.4
100 Ritz 24.23 3437 5411 6280 73.44 100 Rtz 3838 77.38 1017 1355 1383
10000 Ritz 25.04 3510 54.74 64.98 7558 10000 Rtz 39.08 7950 102.2 139.6 140.2
C-S-C-S Ritz 25.04 3510 54.74 6501 75.61 C-S-C-S Ritz 39.09 7953 1022 1396 140.2

Ex.13 RS-RS-RS-S Ex.13 RS-RS-RS-S

S-S-S-S Ritz 1426 27.42 4387 4935 57.02 $-S-S-S Ritz 3208 6169 9870 111.0 1283
1 Ritz 1564 2845 4558 5021 5850 1 Ritz 3357 6338 1002 1128 129.9
10 Rtz 2081 3292 53.86 5444 65.98 10 Ritz 4017 7198 1085 1232 139.1
100 Rtz 2501 37.17 59.18 63.26 75.20 100 Ritz 4670 82.72 1206 1392 153.8
10000 Ritz 2585 38.08 60.29 6548 7751 10000 Ritz 4814 8546 1239 1439 158.2
C-C-C-S Ritz 2586 3809 6030 6551 77.53 C-C-C-S Ritz 48.16 8549 124.0 1440 1583

Ex.15 RS-RS-RS-RS Ex.15 RS-RS-RS-RS

S-S-S-S Ritz 14.26 27.42 4387 4935 57.02 $-S-S-S Ritz 3208 6169 9870 111.0 1283
1 Ritz 1581 2883 4564 50.70 58.69 1 Ritz 3451 6383 10L4 1131 1309
10 Ritz 2152 3483 5418 57.30 67.04 10 Ritz 4558 7517 1170 1251 1459
100 Ritz 2608 40.48 6381 64.75 77.22 100 Rtz 57.77 89.86 1414 1440 1713
10000 Ritz 2699 4169 66.10 6650 79.78 10000 Ritz 6073 93.79 1487 149.6 179.5
C-C-C-C Ritz 2701 4170 66.12 6652 78.81 C-C-C-C Ritz 60.76 93.83 1488 149.7 179.6
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Figure 9 Mode shapes (nodal lines) of square plates (Ex.2) (O: Maximum amplitude)

by rotational springs), Ex.13 (three edges) and Ex.15 (four
edges), where all examples here start from S-S-S-S plate.
Since the present frequency parameter uses the side length
a along x axis (Fig.1) in Eqg.(12), a rectangular plate
(a/b=2/3) appears to have more area than a plate (a/b=1.5),
and therefore frequency values of a/b=2/3 in Table 18 have
lower values than those of the smaller plate of a/b=1.5.
The frequency values for other aspect ratios may be
approximated by three-point interpolation or extrapolation
curves using values for a/b=2/3, 1 and 1.5 in the paper.

3.4. Vibration mode of square plates

In free vibration analysis, vibration mode shapes are also
important technical information. Nodal lines (line of zero
amplitude) are plotted in Fig.9, as one example, for a
square plate with one rotational spring on Edge(1) (Ex.2 in
Fig.2). Variations of nodal lines are illustrated starting
from kr*=0 (S-C-S-S plate) to kr*=ow (C-C-S-S plate) by
increasing rotational spring stiffness as kr*=10 and 1000.
The maximum amplitude and nodal line are given as a
circle O and thick solid lines in each figure.

All the first modes are (m*,n*)=(1,1) mode, where m*
and n* are half wave numbers to describe modal shapes.
There appear no nodal lines in the fundamental modes. The
second and third modes are (2,1) and (1,2) modes,
respectively. As the stiffness kr* is increased, nodal lines

start skewed, and eventually these two modes merge and
degeneration of (2,1) and (1,2) mode occurs to show the
same nodal pattern. The fourth mode is (2,2) mode and
nodal lines are kept almost straight and do not deform
much. The fifth mode is (3,1) mode and nodal lines are
skewed due to the stiffness increase. A nodal circle is
formed by superposing (3,1) and (1,3) mode, as observed
for totally clamped (C-C-C-C) square plate [1].

4. Conclusions

The present paper has illustrated a straightforward
application of Ritz method to accurately determine the
natural frequencies of a rectangular plate with uniform
rotational elastic springs located on any of the four edges.
A set of additional energy terms due to the springs was
added to the plate strain energy in bending. The effects of
the rotational springs on determining frequencies of the
simply supported rectangular plates were comprehensively
investigated through numerical results, including careful
convergence and comparison  studies.  Accurate
frequencies were tabulated for all the possible
combinations of rotationally constrained edge(s) and other
simply supported or clamped edges. It is expected that the
comprehensive data is useful for researchers and design
engineers.
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