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Abstract 

Comprehensive and accurate numerical results are presented for natural frequencies of thin isotropic, simply supported rectangular 

plates additionally constrained by rotational elastic springs on the edges. For complete coverage of combination, the number of all the 

combinations in boundary conditions of simply supported, rotationally constrained and clamped is calculated by Polya counting theory, 

and all sets of frequency parameters are tabulated for the lowest five modes. The Ritz method, along with displacements assumed in 

special polynomial form with boundary index, is used to include the strain energy stored in the rotational springs. Convergence and 

comparison studies are made to demonstrate accuracy of tabulated results, and the frequency parameters are listed for the fifteen sets of 

boundary conditions and various spring stiffness of the square plates. Some results are also presented for rectangular plates. 
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1. Introduction 

Vibration of flat plates has been an important research 

topic in mechanical, aeronautical and other structure-

oriented fields in engineering. A large number of 

publications has appeared since a monograph was 

compiled by Leissa [1] in 1969, and some good textbooks 

were released, for example a book written by Gorman [2] 

on plate vibration. Among various plate applications, the 

most typical planform is a rectangle, and Leissa [3] 

published a paper on frequency parameters to cover all 

combinations of free, simply supported and clamped 

edges. These results are updated by the present author in 

improved accuracy [4]. 

For rectangular plates elastically constrained along 

edges, a reasonable number of papers were published 

because of the importance that plate structural elements are 

usually attached elastically to the main structure. Up to the 

year of 2000, Laura and his co-workers published some 

papers [5-8] to obtain lower frequencies, and other authors 

[9,10] dealt with plates with springs. A series of notable 

works were written by Gorman [11-15] on vibration of 

rectangular plates with elastic edge supports by using a 

famous method of the superposition method.   

In the 2000’s, Li [16] and Li [17] presented solutions for 

predicting frequencies of rectangular plates with generally 

restrained edges. Eftekhari and Jafari [18] derived a 

solution for variable thickness plates with elastic edges. 

Recently, Wan [19] presented an original analysis on the 

topic, and Zhang and others [20] presented in 2021 some 

results  on  plates  with  free  and opposite  two  adjacent 

elastic edges.  Leng and others [21] studied in  2022 

vibration of plates with one corner free and its edges 

rotationally-restrained. Thus, up to now, the vibration of 

rectangular plates with elastic edge springs has drawn 

attentions from researchers, but the purpose of all the 

previous papers seems to propose analytical methods, and 

the frequency data presented are still limited to some 

specific cases.  

   The present author therefore undertakes to compile 

comprehensive and organized sets of frequency 

parameters for the problem, and published already one 

paper [22] on  the free plates elastically supported by 

translational springs. In this paper, an analysis is extended 

to simply supported rectangular plates with rotational 

spring on the edges. These two papers fully encompass 

elastically supported rectangular plates in a way to cover 
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Figure 1. Simply supported rectangular plate with uniform 
rotational springs on the edges and the coordinate system 
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from a totally free to a simply supported plate [22] and 

from there to a totally clamped plate (present paper).  

 

2.  Methodology  

2.1. Combination of boundary conditions 

   Figure 1 illustrates an isotropic rectangular plate simply 

supported along four edges and elastically constrained by 

additional uniform rotational spring at the edges, and this 

edge condition is denoted by RS (Rotational Spring) in the 

paper. The dimension of the plate is given by a×b×h 

(thickness) and the origin of the coordinate system is 

located in the center. Starting from the left hand edge (x= 

-a/2), four edges are labelled as Edge(1), Edge(2), Edge(3) 

and Edge(4) in counter-clock-wise, and each spring can 

have different value of rotational spring stiffness. 

When one considers combination of the classical 

boundary conditions (F, S, C) in an isotropic square plate 

(a/b=1), there are twenty-one combinations to give distinct 

sets of the identical natural frequencies and this number 

can be theoretically determined by use of Polya counting 

theory [23,24]. In this theory, the number of combinations 

is determined by a cyclic polynomial 

( )4 3 21
( ) 2 3 2

8
GZ z z z z z= + + +              (1) 

where ZG is the number of distinct combinations to show 

independent sets of different natural frequencies, G 

denotes  “permutation”, and z is the number of different 

boundary conditions considered at each edge. For example,  

when one considers three boundary conditions (Free (F), 

Simple support (S), Clamp (C) ), the number “three” is 

inserted in Eq.(1) as (3) 21GZ = .                                               

In this paper, three combinations of S, RS and C are 

considered that end up with (3) 21GZ = , but the 

combinations only by S and C (i.e., z=2) were already 

covered [4] and remaining fifteen cases  

(3) (2) 21 6 15G GZ Z− = − =                     (2) 

are treated in numerical examples, as shown as Ex.1-15 in 

Fig. 2. 

   For an isotropic rectangular plate (a/b≠1), a cyclic 

polynomial becomes 

( )4 3 21
( ) 2

4
GZ z z z z= + +               (3) 

and the number of combinations increases up to 

(3) 36GZ =                            (4) 

for the combination of S, RS and C [23,24]. 

2.2. Ritz method considering rotational edge springs 

   A semi-analytical solution is employed here as in 

Refs.[4,22,23] from the method of Ritz under the classical 

thin plate theory.  The relation between stress and strain in 

the plate is 

11 12
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                      (5) 

with the matrix elements given by 

 
11 22 21
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
= =

−
, 12 11Q Q= ,

( )
66

2 1

E
Q G


= =

+
     (6)   

where E is Young’s modulus, G is a shear modulus and ν 

is a Poisson’s ratio. When Eq.(5) is integrated through the 

thickness after multiplying a thickness coordinate z, one 

gets moment resultants  
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                   (7) 

in terms of curvature  , ,x y xy   .  

 

Figure 2. Fifteen numerical examples dealt in the paper  

       (RS: Rotational Spring, S: Simple support, C: Clamp) 
 

 

 

 

Ex.1 Ex.2 Ex.3

RS-S-S-S RS-C-S-S RS-S-C-S

Ex.4 Ex.5 Ex.6

RS-C-C-S RS-C-S-C RS-C-C-C

Ex.7 Ex.8 Ex.9

RS-RS-S-S RS-RS-C-S RS-RS-C-C

Ex.10 Ex.11 Ex.12

RS-S-RS-S RS-C-RS-S RS-C-RS-C

Ex.13 Ex.14 Ex.15

RS-RS-RS-S RS-RS-RS-C RS-RS-RS-RS



EPI International Journal of Engineering, Vol. 7 No. 2, Aug 2024, pp. 58-67  

60 

 

  If one considers the small amplitude (linear) free 

vibration of plate, the deflection w  may be written by 

         tyxWtyxw sin),(),,( =                               (8) 

where W is the amplitude and ω is a radian frequency of 

the plate.  Then, the maximum strain energy due to the 

bending is expressed by 

   
11 12

max 12 22

66
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where the Dij are the bending stiffnesses and    is a 

curvature vector 
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The maximum kinetic energy is also given by 

         2 2

max

1

2 A
T h W dA =                           (11) 

where ρ [kg/m3] is the mass per unit volume.    

For the sake of simplicity, non-dimensional quantities 

are introduced as 

            
2 2

,
x y

a b
 = =  (non-dimensional coordinates),  

/a b = (aspect ratio),  /ij ijd D D=  

3

212(1 )
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2 h
a

D


 =   (frequency parameter) 

    Next, we consider the energy stored in the elastic 

restraints (rotational elastic springs). The energy equation 

is written as 
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(13) 

where kri

 

(i=1,2,3,4) are stiffness of rotational springs in 

unit [Nm/m]=[N] per unit edge length. This energy is 

added to the plate bending energy (9). 

 The next step in the Ritz method is to assume the 

amplitude as 

          
−
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where Amn are unknown coefficients, and ( )mX   and )(nY  

are the functions modified so that any kinematical 

boundary conditions are satisfied at the edges [4,22,23].   

   After substituting Eq.(14) into these energies, the 

stationary value is obtained by 

            ( ) max ,maxmax 0
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
   

 ( 0,1,2,..( 1); 0,1,2,...( 1)m M n N= − = − )     (15) 

Then the eigenvalue equation that contains a frequency 

parameter Ω is derived as  

( ) 

( )

1 1
(2200) 2 (2002) (0220) 4 (0022)

11 12 22

0 0

2
2 (1111) (0000)

66

( )

4 Spring term
16

0 0,1,2,..( 1); 0,1,2,...( 1)

M N

m n

mnmmnn

d I d I I d I

d I I A

m M n N

 



− −

= =

 + + +

 
+ + − 

 

= = − = −

 

・  

  (16) 

where an integral I is the products   
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of the two integrals defined by  
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and (Spring term) is the line integral along an edge. 
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(19) 

with nondimensional rotational constant 

* * * *31 2 4
1 2 3 4, , ,rr r r

r r r r

k ak a k a k a
k k k k

D D D D
= = = =          (20) 

Equation (16) is a set of linear simultaneous equations in 

terms of the coefficients Amn, and the eigenvalues Ω may 

be extracted by using existing computer subroutines. 

     The present approach uses simple polynomials 

              ( ) ( )
bc1 bc3

( ) 1 1m

mX    = + −  

      ( ) ( )
bc2 bc4

( ) 1 1n

nY    = + −                     (21) 

(bc1=bc2=bc3=bc4=1) to represent a simply supported 

plate as a base plate, and the integrals (18)(19) can be 

exactly calculated. 

 

2.3. Finite element formulation of rotational spring 

A finite element is newly developed to include the effect 

of rotational springs distributed along the edges, and the 

finite element code (FEM code) is developed by the author 

to compare the result with the Ritz solution to establish 

accuracy of both methods. Formulation of plate bending 

element and kinetic element are already explained in 

Refs.[22,25]. Here only formulation of the edge spring 

element is shown. 
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The amplitude inside the element including boundary 

is assumed by 

( )   W x,y P =                             (22) 

where {P} and {α} are (T: transpose) 

   2 2 3 2 2 3 3 31P ,x,y,x ,xy,y ,x ,x y,xy ,y ,x y,xy=    (23) 

   1 2 3 4 5 6 7 8 9 10 11 12

T
, , , , , , , , , , ,            =  

 (24) 

The displacement at node i   is defined as 

  ( ) ( ) 
T

i i i i
W , W / x , W / y =                  (25) 

and the displacements of four nodes labelled as i,j,k and l 

in a rectangular element can be expressed as 

   
T

e i j k l    =                             (26) 

Using [C] which is obtained by substituting Eq.(26) into 

the four sets of node coordinates, W is transformed as 

 ( )     
1

eW x,y P C 
−

=                          (27) 

For example, when the rotational spring is distributed 

uniformly along Edge(2) or Edge(4) at y y= , equation 

(27) is substituted into the second or fourth term of Eq.(13) 

and  
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   (28) 

(i=2,4) is obtained, where [Kri] is the i-th finite element of 

rotational edge spring 

( ) ( )1 1
, ,

T

T

ri ri

P x y P x y
K k C dx C

y y

− −
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                  (29) 

with ( ),P x y  being a function of x at fixed / 2y b= −  or 

/ 2y b=  for Edge(2) and Edge (4), respectively. Spring 

finite elements along Edge(1) and Edge(3) can be 

formulated in the same manner. 

3. Numerical examples and discussions 

3.1. Convergence and comparison of the solution 

It is assumed in numerical examples that the material is 

isotropic with Poisson’s ratio ν=0.3. Young’s modulus E 

and Poisson’s ratio ν are included in the dimensionless 

frequency parameters Ω in Eq.(12).  

Figure 2 illustrates numerical examples Ex.1-Ex.15 with 

different degree of elastic constraints by rotational springs, 

and such edge (i.e., simply supported edge with uniform 

rotational spring attached) is denoted by “RS” (Rotational 

Spring). In case that the example plates have plural 

rotational springs on the edges, it is assumed that all the 

springs have the same degree of constraint. 

  

 

*

1 2 3 4r r r r r

a a a a
k k k k k

D D D D

       
= = = =       

       
       (30) 

in the calculation, although they can take any different 

values as needed. 

 In the figure, Ex.1-6 are square plates constrained on 

Edge(1) by one rotational spring, and have different 

combinations of RS-S-S-S, RS-C-S-S, RS-S-C-S, RS-C-

C-S, RS-C-S-C and RS-C-C-C, respectively, on the 

remaining three edges of Edge(2)-Edge(4). Similarly, 

Ex.7-12 are plates constrained on two edges constrained 

by two rotational springs and have different combinations  

Table 1 Convergence of (a) Ritz solution and (b)FEM solution

 for square plates constrained by rotational spring (Ex.1)

 Ω１ Ω2 Ω3 Ω4 Ω5

(a) Present Ritz solution

6×6 23.37 51.44 57.75 85.28 101.5

8×8 23.37 51.44 57.74 85.27 100.1

10×10 23.37 51.44 57.74 85.27 100.1

  k t
＊

=10000

6×6 23.64 51.67 58.65 86.14 101.7

8×8 23.64 51.67 58.64 86.13 100.3

10×10 23.64 51.67 58.64 86.13 100.3

(b) Present FEM solution

10×10 23.24 50.98 57.31 83.61 99.16

15×15 23.31 51.21 57.53 84.47 99.61

20×20 23.33 51.31 57.62 84.81 99.80

  k t
＊=10000

10×10 23.51 51.26 58.21 84.63 99.55

15×15 23.58 51.45 58.42 85.32 99.83

20×20 23.62 51.54 58.51 85.65 100.0

Table 2 Comparison of frequency parameters for square plates (Ex.15)

 Ω１ Ω2 Ω3 Ω4 Ω5

Ritz 21.502 51.191 51.191 80.828 100.58

[17] 21.500 51.187 51.187 80.816 100.58

Ritz 28.50 60.22 60.22 90.81 111.19

[17] 28.50 60.22 60.22 90.81 111.19

[16] 28.50 60.22 60.22 90.81 111.2

  k t
＊=100

Ritz 34.671 70.781 70.781 104.45 127.03

[17] 34.671 70.780 70.780 104.45 127.02

[16] 34.67 70.78 70.78 104.5 127.0

  k t
＊

=1000

Ritz 35.843 73.104 73.104 107.79 131.06

[17] 35.842 73.103 73.103 107.79 131.06

  k t
＊=100

  k t
＊=100

  k t
＊=1

  k t
＊=10
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 k r＊ Ω１ Ω2 Ω3 Ω4 Ω5  k r＊ Ω１ Ω2 Ω3 Ω4 Ω5

(0) Ritz 19.74 49.35 49.35 78.96 98.70 (0) Ritz 23.65 51.67 58.65 86.13 100.3

S-S-S-S FEM 19.71 49.24 49.24 78.54 98.47 S-S-C-S FEM 23.61 51.53 58.52 85.63 99.99

Ritz 20.18 49.53 50.09 79.43 98.79 Ritz 24.21 51.91 59.44 86.67 100.4

FEM 20.16 49.43 49.99 79.01 98.56 FEM 24.18 51.77 59.31 86.16 100.1

Ritz 21.95 50.43 53.74 81.95 99.31 Ritz 26.56 53.08 63.48 89.57 101.0

FEM 21.92 50.32 53.63 81.53 99.07 FEM 26.51 52.93 63.35 89.06 100.7

Ritz 23.37 51.44 57.74 85.27 100.1 Ritz 28.55 54.42 68.22 93.54 102.0

FEM 23.33 51.31 57.62 84.81 99.80 FEM 28.50 54.25 68.07 92.98 101.6

Ritz 23.64 51.67 58.64 86.13 100.3 Ritz 28.95 54.74 69.32 94.57 102.2

FEM 23.62 51.54 58.51 85.65 100.0 FEM 28.89 54.57 69.16 94.00 101.9

(infinity) Ritz 23.65 51.67 58.65 86.13 100.3 (infinity) Ritz 28.95 54.74 69.33 94.59 102.2

C-S-S-S FEM 23.61 51.53 58.52 85.63 99.99 C-S-C-S FEM 28.89 54.55 69.17 93.96 101.9

 k r＊ Ω１ Ω2 Ω3 Ω4 Ω5  k r＊ Ω１ Ω2 Ω3 Ω4 Ω5

(0) Ritz 23.65 51.67 58.65 86.13 100.3 (0) Ritz 27.05 60.54 60.79 92.84 114.6

S-C-S-S FEM 23.61 51.53 58.52 85.63 99.99 S-C-C-S FEM 27.00 60.37 60.62 92.23 114.2

Ritz 24.02 52.38 58.80 86.57 101.1 Ritz 27.55 60.84 61.45 93.33 114.7

FEM 23.98 52.24 58.67 86.06 100.8 FEM 27.50 60.68 61.28 92.72 114.4

Ritz 25.54 55.89 59.57 88.89 105.9 Ritz 29.63 61.86 65.35 96.04 115.3

FEM 25.49 55.75 59.43 88.38 105.6 FEM 29.57 61.69 65.19 95.43 115.0

Ritz 26.80 59.75 60.47 92.02 112.8 Ritz 31.46 63.04 69.98 99.79 116.1

FEM 26.75 59.60 60.32 91.46 112.5 FEM 31.39 62.85 69.80 99.13 115.8

Ritz 27.05 60.53 60.78 92.83 114.5 Ritz 31.82 63.33 71.06 100.8 116.4

FEM 27.00 60.38 60.63 92.26 114.2 FEM 31.76 63.13 70.88 100.1 116.0

(infinity) Ritz 27.05 60.54 60.79 92.84 114.6 (infinity) Ritz 31.83 63.33 71.08 100.8 116.4

C-C-S-S FEM 27.00 60.37 60.62 92.23 114.2 C-C-C-S FEM 31.75 63.11 70.88 100.1 116.0

Table 3 Frequency parameters Ω of square plates 

            (Ex.1, RS-S-S-S, ν=0.3)

Table 4 Frequency parameters Ω of square plates 

            (Ex.2, RS-C-S-S, ν=0.3)

Table 5 Frequency parameters Ω of square plates 
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            (Ex.3, RS-S-C-S, ν=0.3)

Figure 3 Variation of frequency parameters of square

               plate with spring stiffness (Ex.1).

Figure 4 Variation of frequency parameters of square

               plate with spring stiffness (Ex.2).

Figure 5 Variation of frequency parameters of square

               plate with spring stiffness (Ex.3).

Table 6 Frequency parameters Ω of square plates

            (Ex.4, RS-C-C-S, ν=0.3)
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Figure 6 Variation of frequency parameters of square

               plate with spring stiffness (Ex.4).

0

20

40

60

80

100

120

SCSS 1 10 100 10000 CCSS

Ω1

Ω3

Ω5

Ω4

Ω2

Fr
eq

ue
nc

y p
ar

am
et

er
 Ω

kr*

0

20

40

60

80

100

120

SSSS 1 10 100 10000 CSSS

Ω1

Ω3

Ω5

Ω4

Ω2

Fr
eq

ue
nc

y p
ar

am
et

er
 Ω

kr*
0

20

40

60

80

100

120

SSCS 1 10 100 10000 CSCS

Ω1

Ω3

Ω5

Ω4

Ω2
Fr

eq
ue

nc
y p

ar
am

et
er

 Ω

kr*

0

20

40

60

80

100

120

SCCS 1 10 100 10000 CCCS

Ω1

Ω3

Ω5

Ω4

Ω2

Fr
eq

ue
nc

y p
ar

am
et

er
 Ω

kr*



EPI International Journal of Engineering, Vol. 7 No. 2, Aug 2024, pp. 58-67  

63 

 

  

 k r＊ Ω１ Ω2 Ω3 Ω4 Ω5

(0) Ritz 28.95 54.74 69.33 94.59 102.2

S-C-S-C FEM 28.89 54.55 69.17 93.96 101.9

Ritz 29.26 55.41 69.46 94.98 103.0

FEM 29.20 55.23 69.30 94.36 102.7

Ritz 30.52 58.74 70.12 97.11 107.8

FEM 30.46 58.56 69.95 96.49 107.4

Ritz 31.61 62.47 70.89 100.0 114.5

FEM 31.54 62.27 70.70 99.35 114.2

Ritz 31.82 63.32 71.07 100.8 116.3

FEM 31.75 63.12 70.89 100.1 116.0

(infinity) Ritz 31.83 63.33 71.08 100.8 116.4

C-C-S-C FEM 31.75 63.11 70.88 100.1 116.0

 k r＊ Ω１ Ω2 Ω3 Ω4 Ω5

(0) Ritz 31.83 63.33 71.08 100.8 116.4

S-C-C-C FEM 31.75 63.11 70.88 100.1 116.0

Ritz 32.25 64.06 71.25 101.2 117.2

FEM 32.17 63.85 71.05 100.5 116.8

Ritz 34.04 67.84 72.11 103.8 122.2

FEM 33.97 67.63 71.90 103.0 121.8

Ritz 35.65 72.33 73.14 107.3 129.7

FEM 35.57 72.10 72.91 106.5 129.3

Ritz 35.98 73.38 73.39 108.2 131.6

FEM 35.90 73.15 73.16 107.4 131.1

(infinity) Ritz 35.99 73.39 73.39 108.2 131.6

C-C-C-C FEM 35.89 73.15 73.15 107.4 131.1

100

10000

Figure 8 Variation of frequency parameters of square

               plate with spring stiffness (Ex.6).

Table 7 Frequency parameters Ω of square plates

            (Ex.5, RS-C-S-C, ν=0.3)

1

10

100

10000

Table 8 Frequency parameters Ω of square plates

            (Ex.6, RS-C-C-C, ν=0.3)

1

10

Figure 7 Variation of frequency parameters of square

               plate with spring stiffness (Ex.5).
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 k r
＊ Ω１ Ω2 Ω3 Ω4 Ω5

S-S-S-S Ritz 19.74 49.35 49.35 78.96 98.70

1 Ritz 20.62 50.27 50.27 79.89 99.64

10 Ritz 23.96 54.67 54.79 84.83 105.0

100 Ritz 26.55 59.44 59.68 91.19 112.5

10000 Ritz 27.05 60.53 60.78 92.82 114.5

C-C-S-S Ritz 27.05 60.54 60.79 92.84 114.6

 k r
＊ Ω１ Ω2 Ω3 Ω4 Ω5

S-S-C-S Ritz 23.65 51.67 58.65 86.13 100.3

1 Ritz 24.58 52.62 59.59 87.09 101.2

10 Ritz 28.25 57.19 64.33 92.23 106.6

100 Ritz 31.24 62.18 69.79 99.0 114.3

10000 Ritz 31.82 63.32 71.06 100.8 116.3

C-C-C-S Ritz 31.83 63.33 71.08 100.8 116.4

 k r
＊ Ω１ Ω2 Ω3 Ω4 Ω5

S-S-C-C Ritz 27.05 60.54 60.79 92.84 114.6

1 Ritz 28.04 61.54 61.72 93.82 115.5

10 Ritz 32.00 66.46 66.48 99.14 121.0

100 Ritz 35.32 72.07 72.07 106.3 129.3

10000 Ritz 35.98 73.38 73.38 108.2 131.6

C-C-C-C Ritz 35.99 73.39 73.39 108.2 131.6

 k r
＊ Ω１ Ω2 Ω3 Ω4 Ω5

S-S-S-S Ritz 19.74 49.35 49.35 78.96 98.70

1 Ritz 20.64 49.72 50.83 79.90 98.89

10 Ritz 24.51 51.65 58.25 85.09 100.0

100 Ritz 28.17 54.11 67.13 92.52 101.7

10000 Ritz 28.94 54.74 69.30 94.56 102.2

C-S-C-S Ritz 28.95 54.74 69.33 94.59 102.2

 k r
＊ Ω１ Ω2 Ω3 Ω4 Ω5

S-C-S-S Ritz 23.65 51.67 58.65 86.13 100.3

1 Ritz 24.40 53.09 58.96 87.00 101.9

10 Ritz 27.78 60.25 60.61 91.81 111.6

100 Ritz 31.10 62.76 68.92 98.81 115.9

10000 Ritz 31.82 63.32 71.05 100.8 116.4

C-C-C-S Ritz 31.83 63.33 71.08 100.8 116.4

Table 12 Frequency parameters Ω of square plates

           (Ex.10, RS-S-RS-S, ν=0.3)

Table 13 Frequency parameters Ω of square plates

           (Ex.11, RS-C-RS-S, ν=0.3)

Table 11 Frequency parameters Ω of square plates

           (Ex.9, RS-RS-C-C, ν=0.3)

Table 10 Frequency parameters Ω of square plates

Table 9 Frequency parameters Ω of square plates

            (Ex.7, RS-RS-S-S, ν=0.3)

           (Ex.8, RS-RS-C-S, ν=0.3)
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of simple support (without spring) and clamped edges. 

Ex.13 and 14 have three edges with rotational springs, and 

Ex.15 is a simply supported plate with all edges 

constrained by rotational springs. 

Convergence study is presented in Table 1 for frequency 

parameters in Ex.1 obtained by the present (a) Ritz method 

and (b) finite element method. In both sets of results, non-

dimensional spring constants are assumed as kr*=100 and 

10000. In (a), the number of  series terms in Eq.(14) are 

taken as M×N= 6×6, 8×8 and 10×10, and very fast 

convergence from above (i.e., this solution is upper-

bounded) is observed within the four significant figures. In 

(b), the number of finite elements is taken as 10×10, 15×15 

and 20×20, and slightly slower convergence from below is 

observed as compared to the Ritz solution. This non-

conforming finite element solution seems to give lower 

bound in this problem, but no theoretical proof is possible 

due to use of this non-conforming element. The 

discrepancy between the Ritz 10×10 solution and FEM 

20×20 solution is 0.60 percent in the maximum and 0.29 

percent on the average. Generally both different solutions 

agree well. 

Table 2 presents a comparison in Ex.15 (uniformly 

constrained on the four edges) between Refs.[16,17] by Li 

and co-workers and the present Ritz result. The present 

solution here is given in the five significant figure to match  

to the result [17], and clearly they show excellent 

agreement. Thus in both Tables 1 and 2, validity of the 

present two methods is well established. 

3.2. Frequency parameters of square plates 

   Tables 3-8 present pairs of frequency parameters 

obtained by the two different methods for the lowest five 

modes of square plates (a/b=1) in Ex.1-Ex.6, respectively. 

The degree of rotational springs is increased as kr
*=0 

(totally simply supported edge), 1, 10, 100, 10000 (almost 

clamped). In the limiting case of kr
*=∞ (infinity), the 

accurate values are available by replacing kr
*=∞ (S) with 

clamped edge (C). It is seen in common that the 

frequencies are monotonically increasing, as RS edge 

starts from simple support (kr
*=0) to strongly constrained 

edge kr
*=10000=104, and this degree of kr

*=104 virtually 

coincide with the clamped edge.   

Such monotonical increases in frequency can be seen in 

the accompanying Figs.3-8 for Ex-1-Ex.6, respectively. 

Some interesting observations are made in each figure. For 

example, in Fig.3 (Table 3), the second and third 

frequencies of S-S-S-S plate are identical (degenerated 

mode of a square plate) for kr
*=0, but they become 

separated as kr
* being increased and become the second 

and third frequencies of C-S-S-S plate. In contrast in Fig.8 

(Table 8), two distinct second and third frequencies of S-

C-C-C plate gradually approach each other and eventually 

merge into one degenerated mode.  

  Tables 9-17 list the lowest five frequencies obtained by 

the Ritz method only, when needed, they can be plotted in 

figures by using Excel and other software. When one needs 

frequency value for intermediate stiffness, one can 

introduce interpolation curves with respect to  the stiffness 

values of kr
*=0, 1, 10, 100, 10000 and ∞. 

 

 

 

3.3. Frequency parameters of rectangular plates 

  Plate planform other than a square is considered to see 

the effect of aspect ratios. Tables 18 and 19 are sets of the 

lowest five frequencies for aspect ratios of a/b=2/3 and 1.5, 

respectively. Examples are taken form Ex.1 (one edge 

constrained by rotational spring), Exs.7 and 10 (two edges  

 k r
＊ Ω１ Ω2 Ω3 Ω4 Ω5

S-C-S-C Ritz 28.95 54.74 69.33 94.59 102.2

1 Ritz 29.57 56.08 69.59 95.37 103.9

10 Ritz 32.42 62.91 71.01 99.80 113.3

100 Ritz 35.33 71.29 72.89 106.3 127.7

10000 Ritz 35.98 73.37 73.39 108.2 131.6

C-C-C-C Ritz 35.99 73.39 73.39 108.2 131.6

 k r
＊ Ω１ Ω2 Ω3 Ω4 Ω5

S-S-S-S Ritz 19.74 49.35 49.35 78.96 98.70

1 Ritz 21.07 50.46 51.01 80.36 99.74

10 Ritz 26.33 55.86 59.17 87.87 105.6

100 Ritz 30.88 61.90 68.73 98.0 114.1

10000 Ritz 31.81 63.31 71.05 100.8 116.3

C-C-C-S Ritz 31.83 63.33 71.08 100.8 116.4

 k r
＊ Ω１ Ω2 Ω3 Ω4 Ω5

S-S-S-C Ritz 23.65 51.67 58.65 86.13 100.3

1 Ritz 24.95 53.32 59.75 87.52 102.1

10 Ritz 30.29 61.45 65.30 95.04 112.2

100 Ritz 35.00 71.03 71.82 105.4 127.5

10000 Ritz 35.98 73.37 73.37 108.2 131.5

C-C-C-C Ritz 35.99 73.39 73.39 108.2 131.6

 k r
＊ Ω１ Ω2 Ω3 Ω4 Ω5

S-S-S-S Ritz 19.74 49.35 49.35 78.96 98.70

1 Ritz 21.50 51.19 51.19 80.83 100.6

10 Ritz 28.50 60.22 60.22 90.81 111.2

100 Ritz 34.67 70.78 70.78 104.5 127.0

10000 Ritz 35.97 73.36 73.36 108.2 131.5

C-C-C-C Ritz 35.99 73.39 73.39 108.2 131.6

Table 14 Frequency parameters Ω of square plates

            (Ex.12, RS-C-RS-C, ν=0.3)

Table 15 Frequency parameters Ω of square plates

            (Ex.13, RS-RS-RS-S, ν=0.3)

Table 16 Frequency parameters Ω of square plates

            (Ex.14, RS-RS-RS-C, ν=0.3)

            (Ex.15, RS-RS-RS-RS, ν=0.3)

Table 17 Frequency parameters Ω of square plates
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Table 18 Frequency parameters Ω of rectangular plate Table 19 Frequency parameters Ω of rectangular plate 

              (a/b =1.5, ν=0.3)

 k r* Ω１ Ω2 Ω3 Ω4 Ω5  k r* Ω１ Ω2 Ω3 Ω4 Ω5

Ex.1 RS-S-S-S Ex.1 RS-S-S-S

0 Ritz 14.26 27.42 43.87 49.35 57.02 S-S-S-S Ritz 32.08 61.69 98.70 111.0 128.3

1 Ritz 14.86 27.74 44.70 49.53 57.67 1 Ritz 32.36 62.28 98.79 111.8 128.6

10 Ritz 17.05 29.14 48.69 50.43 60.93 10 Ritz 33.60 65.35 99.31 116.2 130.3

100 Ritz 18.62 30.41 51.44 52.86 64.72 100 Ritz 34.79 69.03 100.1 122.8 133.0

10000 Ritz 18.90 30.66 51.67 53.77 65.61 10000 Ritz 35.05 69.90 100.3 124.6 133.8

C-S-S-S Ritz 18.90 30.67 51.67 53.78 65.62 C-S-S-S Ritz 35.05 69.91 100.3 124.6 133.8

Ex.7 RS-RS-S-S Ex.7 RS-RS-S-S

S-S-S-S Ritz 14.26 27.42 43.87 49.35 57.02 S-S-S-S Ritz 32.08 61.69 98.70 111.0 128.3

1 Ritz 15.03 28.12 44.76 50.03 57.86 1 Ritz 33.29 62.78 100.1 112.1 129.6

10 Ritz 17.73 31.03 49.00 53.28 61.98 10 Ritz 38.63 68.31 107.8 118.0 137.1

100 Ritz 19.61 33.52 53.40 56.74 66.68 100 Ritz 43.77 74.91 119.2 126.9 149.0

10000 Ritz 19.95 34.02 54.35 57.50 67.78 10000 Ritz 44.88 76.53 122.3 129.4 152.5

C-C-S-S Ritz 19.95 34.02 54.36 57.51 67.79 C-C-S-S Ritz 44.89 76.55 122.3 129.4 152.5

Ex.10 RS-S-RS-S Ex.10 RS-S-RS-S

S-S-S-S Ritz 14.26 27.42 43.87 49.35 57.02 S-S-S-S Ritz 32.08 61.69 98.70 111.0 128.3

1 Ritz 15.47 28.07 45.52 49.72 58.31 1 Ritz 32.64 62.88 98.89 112.6 128.9

10 Ritz 20.22 31.14 51.65 53.58 64.99 10 Ritz 35.36 69.17 99.98 121.4 132.4

100 Ritz 24.23 34.37 54.11 62.80 73.44 100 Ritz 38.38 77.38 101.7 135.5 138.3

10000 Ritz 25.04 35.10 54.74 64.98 75.58 10000 Ritz 39.08 79.50 102.2 139.6 140.2

C-S-C-S Ritz 25.04 35.10 54.74 65.01 75.61 C-S-C-S Ritz 39.09 79.53 102.2 139.6 140.2

Ex.13 RS-RS-RS-S Ex.13 RS-RS-RS-S

S-S-S-S Ritz 14.26 27.42 43.87 49.35 57.02 S-S-S-S Ritz 32.08 61.69 98.70 111.0 128.3

1 Ritz 15.64 28.45 45.58 50.21 58.50 1 Ritz 33.57 63.38 100.2 112.8 129.9

10 Ritz 20.81 32.92 53.86 54.44 65.98 10 Ritz 40.17 71.98 108.5 123.2 139.1

100 Ritz 25.01 37.17 59.18 63.26 75.20 100 Ritz 46.70 82.72 120.6 139.2 153.8

10000 Ritz 25.85 38.08 60.29 65.48 77.51 10000 Ritz 48.14 85.46 123.9 143.9 158.2

C-C-C-S Ritz 25.86 38.09 60.30 65.51 77.53 C-C-C-S Ritz 48.16 85.49 124.0 144.0 158.3

Ex.15 RS-RS-RS-RS Ex.15 RS-RS-RS-RS

S-S-S-S Ritz 14.26 27.42 43.87 49.35 57.02 S-S-S-S Ritz 32.08 61.69 98.70 111.0 128.3

1 Ritz 15.81 28.83 45.64 50.70 58.69 1 Ritz 34.51 63.88 101.4 113.1 130.9

10 Ritz 21.52 34.83 54.18 57.30 67.04 10 Ritz 45.58 75.17 117.0 125.1 145.9

100 Ritz 26.08 40.48 63.81 64.75 77.22 100 Ritz 57.77 89.86 141.4 144.0 171.3

10000 Ritz 26.99 41.69 66.10 66.50 79.78 10000 Ritz 60.73 93.79 148.7 149.6 179.5

C-C-C-C Ritz 27.01 41.70 66.12 66.52 78.81 C-C-C-C Ritz 60.76 93.83 148.8 149.7 179.6

                (a/b =2/3, ν=0.3)
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Figure 9 Mode shapes (nodal lines) of square plates (Ex.2) (〇: Maximum amplitude) 

 

by rotational springs), Ex.13 (three edges) and Ex.15 (four 

edges), where all examples here start from S-S-S-S plate. 

Since the present frequency parameter uses the side length 

a along x axis (Fig.1) in Eq.(12), a rectangular plate 

(a/b=2/3) appears to have more area than a plate (a/b=1.5), 

and therefore frequency values of a/b=2/3 in Table 18 have  

lower values than those of the smaller plate of a/b=1.5.  

The frequency values for other aspect ratios may be 

approximated by three-point interpolation or extrapolation 

curves using values for a/b=2/3, 1 and 1.5 in the paper. 

3.4. Vibration mode of square plates 

   In free vibration analysis, vibration mode shapes are also 

important technical information. Nodal lines (line of zero 

amplitude) are plotted in Fig.9, as one example, for a 

square plate with one rotational spring on Edge(1) (Ex.2 in 

Fig.2). Variations of nodal lines are illustrated starting 

from kr*=0 (S-C-S-S plate) to kr*=∞ (C-C-S-S plate) by 

increasing rotational spring stiffness as kr*=10 and 1000. 

The maximum amplitude and nodal line are given as a 

circle 〇 and thick solid lines in each figure. 

   All the first modes are (m*,n*)=(1,1) mode, where m* 

and n* are half wave numbers to describe modal shapes. 

There appear no nodal lines in the fundamental modes. The 

second and third modes are (2,1) and (1,2) modes, 

respectively. As the stiffness kr* is increased, nodal lines 

start skewed, and eventually these two modes merge and 

degeneration of (2,1) and (1,2) mode occurs to show the 

same nodal pattern. The fourth mode is (2,2) mode and 

nodal lines are kept almost straight and do not deform 

much. The fifth mode is (3,1) mode and nodal lines are 

skewed due to the stiffness increase. A nodal circle is 

formed by superposing (3,1) and (1,3) mode, as observed 

for totally clamped (C-C-C-C) square plate [1]. 

4. Conclusions 

The present paper has illustrated a straightforward 

application of Ritz method to accurately determine the 

natural frequencies of a rectangular plate with uniform 

rotational elastic springs located on any of the four edges. 

A set of additional energy terms due to the springs was 

added to the plate strain energy in bending. The effects of 

the rotational springs on determining frequencies of the 

simply supported rectangular plates were comprehensively 

investigated through numerical results, including careful 

convergence and comparison studies. Accurate 

frequencies were tabulated for all the possible 

combinations of rotationally constrained edge(s) and other 

simply supported or clamped edges. It is expected that the 

comprehensive data is useful for researchers and design 

engineers. 
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