
EPI International Journal of Engineering pISSN 2615-5109

Volume 5, Number 2, August 2022, pp. 81-85 eISSN 2621-0541

DOI: 10.25042/epi-ije.082022.01

81

Application of JavaScript Code Similarity Detection for
Assessment of Web Programming Assignment
Muhammad Niswara,*

aDepartment of Informatics, Faculty of Engineering, Universitas Hasanuddin. Email: niswar@unhas.ac.id

Abstract

Students tend to copy programming assignments from their classmates in programming courses. Students copy codes in various ways,

such as changing variable names and code structure order. Lecturers spend much time checking programming assignments, especially

when the number of students enrolled in the course is large. They must check whether students have completed their programming

assignments individually or copied their classmates' assignments. We developed a JavaScript code similarity detection application for

web programming coursework using lexical analysis and Jero Winkler's Algorithm. Our application can detect the level of the students’

programming assignment similarity and assist the lecturer in deciding on plagiarism.

Keywords: Similarity detection; javascript; tokenizer; Jaro-Winkler algorithm; web programming

1. Introduction

Lecturers spend much time checking the students’

programming assignments for programming courses,

especially if the number of students enrolled in the class is

large. They must check whether students have completed

their programming assignments independently or copied

their classmates' assignments. Students burdened with

many tasks from other courses usually tend to copy and

modify the source code of their classmates so that

plagiarism is not detected. Moreover, the nature of many

computer science assignments is that there is an ideal

solution for each question; consequently, the best answers

will be highly similar [1]. To reduce student cheating in

programming courses, the author in [2] proposed to

change the grading policy by reducing the weight of the

assessment of the programming assignment and increasing

the weight of the quiz assessment. This solution may

burden the lecturers with other assessments, such as

quizzes and presentations, to determine whether students

do their programming assignments individually.

Generally, students modify the source code by

changing the lexical and the code structure. There has been

some research on attempts to detect programming code

similarities to assist lecturers in checking programming

assignments. Reference [3] proposed a tool called

CODESIGHT to detect the similarity of programming

source code using modified Greedy String Tiling

algorithms. The CODESIGHT analyzes a source code

collection and identifies the fragments' similarities at the

lexical and syntactic levels. Reference [4] proposed

similarity detection using the Karp-Rabin Greedy-String-

Tiling algorithm and the Winnowing algorithm for Java

source code. The proposed method can detect the

similarity when various lexical or structural modifications

are applied to plagiarized source code. Reference [5]

proposed a cross-language source similarity detection

(CLCSD) based on a code flowchart and compared it with

the standardized code flowchart (SCFC).

Reference [6] proposes a similarity detection technique

that uses richer structural information than normal while

maintaining a reasonable execution time. The technique

generates the syntax trees of program code files, extracts

directly connected n-gram structure tokens from them, and

performs the subsequent comparisons using an algorithm

from information retrieval, cosine correlation in the vector

space model. Reference [7] discusses a system designed to

test the independence of source codes submitted by

students participating in programming competitions. It

highlights the challenges in programming education and

the benefits of systematic programming and competition

participation. The article also addresses the issue of

plagiarism and suggests an algorithm utilizing the

Levenshtein edit distance and similarity to detect

plagiarized code.

Reference [8] presents a method for detecting

similarities in language independent source code using

standard Unix filter. Reference [9] introduces an approach

to identify plagiarism by analyzing the sequence of code

submission made by a single student. References [10]

examines several name matching techniques and provides

a comparative analysis of their effectiveness. Reference

[11] introduces Deckard, a tree-based approach for

detecting code clones.

*Corresponding author. Tel.: +62-852-5642-8572

Jalan Poros Malino km. 6, Bontomarannu, Gowa

Sulawesi Selatan, Indonesia

EPI International Journal of Engineering, Vol. 5 No. 2, Aug 2022, pp. 81-85

82

Reference [12] presents a novel approach called

WASTK (Weighted Abstract Syntax Tree Kernel for

detecting source code plagiarism in compter science

education. The approach involves converting source code

into abstract syntax trees and calculating the tree kernel to

determine similarity between two abstract syntax trees.

Reference [13]focuses on identifying code fragments that

exhibit similar API usage patterns, which can indicate

potential code clones. The authors propose an efficient

technique that leverages API call sequences to detect such

clones without relying on detailed syntax or semantics of

the code.

In this research, we developed an application to detect

the similarity of JavaScript code to determine plagiarism.

JavaScript is a programming language used in building

web applications. Initially, Javascript was intended to

build front-end applications, but now JavaScript is also

used to build back-end applications, i.e., node.js. We use

the JavaScript programming language to teach internet and

web programming courses. In this course, we give

students a programming assignment that takes much time

to review to ensure that the students completed the

programming assignment correctly and individually.

Therefore, we developed an application to assist the

lecturers in detecting the similarity of students’

programming assignments.

2. Methods

We developed an application that allows students to

conduct unit testing of their programming assignment

before submission, and the lecturer can detect ad classify

the similarity of students’ Javascript programming

assignments using the Jaro-Winkler algorithm. Our

proposed solution uses the ESPRIMA [14] library for

lexical analysis (tokenizing) and the Jaro Winkler

Algorithm to check the level of similarity. Generally,

programming tasks have ideal solutions so that the

solutions for student programming tasks have high

similarity. Therefore, we assume the student has

committed plagiarism when the similarity is more than

90%. This application aims to assist lecturers in evaluating

students’ programming assignments.

The workflow of this application consists of four

stages, as shown in Fig. 1. First, the application retrieves

student assignments from the database. Each student’s

assignment is compared with one another.

Figure 1. Code similarity check application

The application carries out a lexical analysis using the

ESPRIMA method. Then it compares the results of

ESPRIMA with the Jaro-Winkler algorithm and, finally,

groups the data by the system. Lexical analysis and

similarity detection algorithm will be explained as

follows:

2.1. Lexical analysis (Tokenizer)

Lexical analysis also referred to as tokenization,

transforms a series of characters, such as programming

code or web pages, into a series of tokens. Tokens are

strings that are identified and carry specific meanings

within the context. We use ESPRIMA, a tool used to

perform syntactic analysis and lexical analysis in

JavaScript programs. The main function of ESPRIMA is

to parse the Javascript program code. ESPRIMA will take

a string value that contains a valid JavaScript program, and

then from the program, and code will be made a syntax

tree (syntax tree), an orderly tree that describes the

syntactic structure of the program. From the results of this

decomposition, the resulting syntax tree can be used for

various purposes, ranging from program transformation to

static program analysis.

2.2. Similarity detection algorithm

In our application, we used the Jaro-Winkler algorithm

to detect the similarity of source codes. According to [9],

the Jaro-Winkler algorithm performs better than other

algorithms in personal name matching. Jaro-Winkler

distance is an extension of the Jaro distance metric, an

algorithm to measure the similarity between two strings.

Usually, this algorithm is used in duplicate detection. It
measures the similarity between two strings by

considering both the number of matching characters and

the positions of those characters. It provides a score

between 0 and 1, where 0 indicates no similarity and 1

indicates an exact match. The Jaro-Winkler distance

algorithm has a time complexity of quadratic runtime

complexity, which is very effective on short strings and

can work faster than the edit distance algorithm.

The Jaro-Winkler algorithm uses several formulas to

calculate the similarity score between two strings. First,

Jaro-Similarity score is calculated between two strings, s1

and s2. It calculates the length of the strings s1 and s2 and

then finds the number of matching characters in the two

strings being compared. It also calculates the number of

transpositions, i.e., the number of adjacent characters that

are out of order or swapped between two compared

strings. Jaro's algorithm defines matching character as a

character in both strings that are the same and characters

are no exceeds the value of the following equation:

⌊
𝑚𝑎𝑥(|𝑠1|,|𝑠2|)

2
⌋ − 1 (1)

Jaro’s Algorithm calculate the similarity score using

the following equation:

EPI International Journal of Engineering, Vol. 5 No. 2, Aug 2022, pp. 81-85

83

𝑑𝑗 =
1

3
×

𝑚

|𝑠1|
+

𝑚

|𝑠2|
+

𝑚−𝑡

𝑚
 (2)

where,

m = the matching characters of the two strings

being compared

s1 = string length 1

s2 = string length 2

t = number of transposition

𝑑𝑗 = Jaro distance score between string 1 and string 2

Jaro-Winkler distance uses a prefix scale (p) which

gives a higher level of assessment, and a prefix length (l)

which states the length of the prefix, which is the length of

the same character from the string being compared until an

inequality is found. If the strings s1 and s2 are compared,

then the Jaro-Winkler distance (𝑑𝑤) is:

𝑑𝑤 = 𝑑𝑗 + (𝑙𝑝(1 − 𝑑𝑗)) (3)

where,

𝑑𝑗 = Jaro distance for strings s1 and s2

l = the length of the common prefix at the beginning

of the string, the maximum value is four characters

(the length of the same character before the

inequality is found, max 4)

p = constant scaling factor. The standard value for this

constant, according to Winkler, is p = 0.1

𝑑𝑤 = Jaro Winkler Distance score

For instance, let’s compare two strings "HELLO" and

"HLELO" using the Jaro-Winkler algorithm.

• Number of matching characters = 4 (“H”,”L”,”L”,

and “O”)

• Number of transpositions = 1 (“E” and “L”).

• Length of string1 = 5 and string2 = 5

So, we can calculate the Jaro similarity score = (4/5 +

4/5 + (4 - 1)/2) / 3 = 0.867. Then we can obtain the Jaro

distance = 1 – 0.867 = 0.133. After that, it calculates the

prefix scale factor by counting the number of matching

characters at the beginning of the strings until a specified

prefix length. The default prefix length in the Jaro-Winkler

algorithm is 4. Here, the matching characters at the

beginning are “H” and “L”. Prefix scale factor. (p) = 0.1 *

(number of matching characters at the beginning) = 0.1 *

2 = 0.2. Now, we can calculate the Jaro-winkler similarity

score = 0.867 + (1 - 0.133) * 0.2 = 0.926. Therefore, the

Jaro-Winkler similarity score between "HELLO" and

"HLELO" is 0.926. This score indicates a relatively high

similarity between the two strings, despite the

transposition of the "E" and "L" characters.

2.3. Web application for similarity detection

We developed a web application for similarity

detection using Hackathon Starter Pack Framework [15]

to help instructor to assess the students’ web programming

assignments. It provides a basic foundation and structure

for building web applications using JavaScript as the

programming language. The Hackathon Starter Pack

Framework is built using JavaScript frameworks and

libraries such as Node.js, Express.js, and MongoDB. It

includes pre-configured settings, file structures, and
example code to help developers kickstart their projects

without having to set up everything from scratch.

Algorithm 1 and 2 show the pseudocode of calculating

Jaro and Jaro-Winkler Similarity score, respectively. We

implemented the Jaro and Jaro-Winkler algorithms into

JavaScript code. Algorithms 3 shows the pseudocode of

similarity check function. In this implementation, the

similarity_check function takes an array of student objects

as input. It iterates over the students and compares the

exercises' code using the Jaro-Winkler algorithm. The

result is stored in the similarTask array, which contains

objects specifying the names of the two students and their

similarity scores.

ALGORITHM 1 : JARO DISTANCE

1

BEGIN PROCEDURE JARO DISTANCE (STR1, STR2)

2 IF STR1 = STR2 THEN

3 OUTPUT1

4 ENDIF

5 LEN1  LEN(STR1)

6 LEN2  LEN(STR2)

7 IF LEN1=0 OR LEN2=0 THEN

8 OUTPUT0

9 ENDIF

10 max_dist  floor(max(len1,len2) / 2) - 1

11 match  0

12 CREATE ARRAY HASH_STR1 HAVING SIZE = LEN(STR1)

13 CREATE ARRAY HASH_STR2 HAVING SIZE = LEN(STR1)

14 FOR I IN 0 TO LEN1

15 FOR J IN MAX(0,I-MAX_DIST) TO MIN(LEN2,

I+MAX_DIST+1)

16 IF str1[I] = str2[J] and hash_str2 = 0 THEN

17 hash_str1[I]  1

18 hash_str2[I]  1

19 BREAK

20 ENDIF

21 ENDFOR

22 ENDFOR

23 IF MATCH = 0 THEN

24 OUTPUT0

25 ENDIF

26 T  0

27 Point  0

28 FOR I IN TO LEN1

29 IF HAS_STR1[I] = 1 THEN

30 WHILE(hash_str2[point] = 0)

31 POINT  POINT + 1

32 DO

33 IF STRING1[I] !=STRING2[POINT++] THEN

34 T  T + 1

35 ENDIF

36 T  T/2

37 ENDIF

38 ENDFOR

39 OUTPUT ((match / len1)+(match/len2)+((match-t)/ match)) /

3

40 END PROCEDURE

EPI International Journal of Engineering, Vol. 5 No. 2, Aug 2022, pp. 81-85

84

ALGORITHM 2 : JARO WINKLER

1 BEGIN PROCEDURE JAROWINKLER(STRI,STR2)

2 JARO DIST JARO_DISTANCE(STR1,STR2)

3 IF JARO_DIST> 0.7 THEN

4 PREFIX -0

5 FOR INOTO MIN(LEN(STRI), LEN(STR2))

6 IF STRING] [I] = STRING2[I] THEN

7 PREFIX - PREFIX+1

8 ELSEIF

9 BREAK

10 ENDIF

11 ENDFOR

12 PREFIX - MIN(4,PREFIX)

13 JARO_DIST - JARODIST+(0.1*PREFIX*(1-

JARO_DIST))
14 ENDIF

15 OUTPUT JARO DIST

16 END PROCEDURE

ALGORITHM 3 : SIMILARITY CHECK

1 BEGIN PROCEDURE SIMILARITY CHECK(STUDENT)

2 CREATE ARRAY SIMILARTASK

3 FORU IN 0 TO LEN(STUDENT)

4 FOR N IN (U +1) TO LEN(STUDENT)

5 ANALYZECODE1 
TOKENIZE(STUDENTS[U].EXERCISES)

6 ANALYZECODE2 

TOKENIZE(STUDENTS[N].EXERCISES)
7 RESULT 

JARO_WINKLER(ANALYZECODE1,ANALYZ

ECODE2)
8 ENDFOR

9 END PROCEDURE

Determining the threshold of similarity at which two

source codes are considered cheating is subjective and can

vary depending on the context and specific guidelines set

by the instructor. In this study, since the programming

assignments have strict constraints and requirements that

limit the possible solution approaches, the best answers

will likely be more similar because they must adhere to the

specified constraints. Therefore, we consider an

acceptable similarity percentage is 90%. Anything beyond

that is considered a high probability of cheating.

3. Results and Discussion

The application has tested on JavaScript programming

assignments in a web programming class in Department of

Informatics, Faculty of Engineering, Hasanuddin

University. Figure 2 shows a user interface display that

compares student assignments with one another and

presents their similarities. Lectures can see the similarity

of the code by pressing the detail button, which will

display the complete code of the two students'

assignments, as shown in Fig. 3 and 4. Figure 3 compares

two JavaScript codes of student assignments with a

similarity percentage of 60.5%. On the other hand, Figure

4 compares two JavaScript codes of student assignments

with a 97% similarity percentage. These two students are

considered plagiarizing if the similarity is above 90%.

From the experiments, typically, students change the

lexical and coding structures of the source code. Students

alter variable names, function names, and comments to

make the code appear different from the original. They use

synonyms, abbreviations, or entirely different names for

identifiers. Students might change the overall structure of

the code, such as reordering or restructuring functions,

loops, conditionals, or statements. This helps in making

the code visually distinct from the original

4. Conclusions

The issue of students copying programming

assignments from their classmates is a common

occurrence in programming courses. With a large number

of students enrolled in the course, manually checking each

programming assignment becomes time-consuming and

inefficient. To address this problem, we have developed a

JavaScript code similarity detection application

specifically designed for web programming coursework.

Our application utilizes lexical analysis using the

Figure 3. Similarity Details with Similarity percentage of 60.5%

Figure 4. Similarity Details with Similarity percentage of 97%

Figure 2. Web interface of similarity report

EPI International Journal of Engineering, Vol. 5 No. 2, Aug 2022, pp. 81-85

85

ESPRIMA method and Jaro-Winkler Algorithm to assess

the similarity level of students' programming assignments.

By analyzing factors such as variable names and code

structure order, the application can provide insights into

potential cases of plagiarism. The primary objective of our

application is to assist lecturers in making informed

decisions regarding plagiarism. It offers a more efficient

and reliable approach to identify instances of code

similarity, enabling lecturers to focus their attention on

potential cases that require further investigation. By

automating the detection process, lecturers can allocate

their time and resources more effectively, ensuring

fairness and maintaining the integrity of the assessment

process.

References

[1] R. Fraser and D. Cheriton, “Collaboration, Collusion, and
Plagiarism in Computer Science Coursework,” Informatics Educ.,

vol. 13, no. 2, pp. 179–195, 2014.

[2] J. Sukhodolsky, “How to Reduce Cheating in an Introductory
Computer Programming Course?,” Int. J. Comput. Sci. Educ. Sch.,

vol. 1, no. 4, 2017.

[3] A. Bejarano, L. García, and E. Zurek, “Detection of Source Code
Similitude in Academic Environments,” Comput. Appl. Eng.

Educ., vol. 23, no. 1, pp. 13–22, 2015.

[4] Z. Đurić and D. Gasevic, “A Source Code Similarity System for
Plagiarism Detection,” Comput. J., vol. 56, pp. 70–86, 2013.

[5] Z. Feng, L. Guofan, L. Cong, and Q. Song, “Flowchart-Based
Cross-Language Source Code Similarity Detection,” Sci.

Program., pp. 1–15, 2020.

[6] O. Karnalim and Simon, “Syntax Trees and Information Retrieval
to Improve Code Similarity Detection,” in ACE20: Proceedings of

the Twenty-Second Australasian Computing Education

Conference, 2020, pp. 48–55.
[7] Z. Gniazdowski and M. Boniecki, “Detection of a Source Code

Plagiarism in a Student Programming Competition,” Zesz. Nauk.

WWSI, vol. 13, no. 21, pp. 74–94, 2018.
[8] J. Petrík, D. Chuda, and B. Steinmuller, “Source code plagiarism

detection: The Unix way,” in 2017 IEEE 15th International

Symposium on Applied Machine Intelligence and Informatics
(SAMI), 2017.

[9] N. Tahaei and D. Noelle, “Automated Plagiarism Detection for
Computer Programming Exercises Based on Patterns of

Resubmission,” in ICER18: Proceedings of the 2018 ACM

Conference on International Computing Education Research,
2018, pp. 178–186.

[10] P. Christen, “A Comparison of Personal Name Matching:

Techniques and Practical Issues,” Jt. Comput. Sci. Tech. Reports
Ser., 2006.

[11] L. Jiang, Z. Zhang, and Z. Su, “Deckard: Scalable and accurate

tree-based detection of code clones,” in Proceedings of the 29th

International Conference on Software Engineering (ICSE’07),

2007, pp. 96–105.

[12] D. Fu, Y. Xu, H. Yu, and B. Yang, “WASTK: An Weighted
Abstract Syntax Tree Kernel Method for Source Code Plagiarism

Detection,” 2017.

[13] E. Kodhai and S. Kanmani, “Method-level code clone detection
through LWH (Light Weight Hybrid) approach,” J. Softw. Eng.

Res. Dev., vol. 2, no. 12, pp. 1–29, 2014.

[14] Anonim, “ESPRIMA Release Master.” 2018. Accessed: Jan. 30,
2022. [Online]. Available:

https://readthedocs.org/projects/esprima/downloads/pdf/latest/

[15] Sahat, “Hackathon Starter.” 2022. [Online]. Available:
https://github.com/sahat/hackathon-starter.

