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Abstract 

This paper aims to present comprehensive lists of accurate natural frequencies of isotropic thin free rectangular plates constrained only 

by translational springs distributed uniformly on the edges. Analytical and numerical approaches are employed to study the free vibration 

of the plates. The first approach is an extension of the Ritz method, and the second approach is the finite element method coded by the 

author. Numerical examples cover rectangular plates from totally free to totally simply supported plates on all edges. Convergence and 

comparison studies are made to establish the accuracy of these solutions. Nine numerical examples are presented in terms of different 

elastic constraints, and the lowest six frequency parameters are provided in the examples with different aspect ratios.   

Keywords: Free vibration; rectangular plate; translational spring; natural frequency; mode shape  

 
1. Introduction 

Flat metal and composite plates are basic structural 

components in modern technology, and vibration analysis 

of such plates has been one of the most important technical 

issues in engineering. On the topic, a famous monograph 

[1] has covered the literature on vibration of plates in 

various geometry, and Gorman [2] wrote a textbook by 

using the superposition method. Among various plate 

shapes, rectangular plate is the most common shape and 

the natural frequencies of isotropic rectangular plates were 

summarized [3] in 1973 for all possible twenty-one 

combinations of boundary conditions and five aspect 

ratios. The present author published papers on rectangular 

plates under classical boundary conditions [4], [5] such as 

free, simply supported and clamped edges. These ideal 

boundary conditions are mathematically well defined. 

In practice, however, the plate edges are recognized to 

be elastically constrained in the intermediate state between 

free and simply supported condition or between simply 

supported and clamped condition. Some decades ago, 

Laura and his coworkers have worked on vibration of 

simply supported rectangular plates constrained against 

rotation along all edges [6]–[9]. Bapat and Venkatramani 

[10] simulated the classical edge conditions by finite 

elastic restraints, and Gorman [11] presented a study on 

vibration of rectangular plates resting on symmetrically-

distributed uniform elastic edge supports. Grossi and Bhat 

[12] presented natural frequencies of edge restrained 

tapered rectangular plates. 

In the 2000’s, Li and Yu [13] proposed a simple 

formula for natural frequencies of plates with uniformly 

restrained edges, and Li and others [14] presented a series 

solution for rectangular plates with general elastic 

boundary supports. Eftekhari and Jafari [15] used a 

variational approach for vibration of variable thickness 

plates with elastic edges, and Ahmadian and Esfandiar 

[16] attempted to identify the elastic boundary condition.  

More recently in the 2020’s, Wan [17] presented 

vibration analysis of rectangular plates with elastic 

boundary conditions, and Zhang and others [18] studied 

rectangular plates with two adjacent edges rotationally-

restrained by using finite Fourier integral transform 

method. Leng and others [19] proposed analytical 

solutions by using the Fourier series method. Thus, this 

topic on vibration of rectangular plates with elastic edge 

condition still attracts attention of researchers. Numerical 

results are however limited to simply supported plates with 

rotational springs, and the lack in frequency data is 
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Figure 1. Rectangular plate with uniform translational springs on 

the edges and the coordinate system 
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obvious for free plates elastically constrained only by 

translational springs. This paper is intended to fill this gap 

and serves for structural design by considering plates 

loosely coupled with edges. 

 

2.  Methods of Analysis  

2.1. Extension of Ritz method to inclusion of edge springs 

A previous solution is extended here as in Refs. [4], [5] 

based on the method of Ritz under the classical thin plate 

theory. This analysis-based solution has a low 

computational cost and easiness in varying combinations 

in boundary conditions, as compared to numerical methods 

such as the finite element method. Figure 1 shows a 

geometry of rectangular plate and the coordinate system, 

and the dimension of the plate is given by a×b×h 

(thickness).  The relation between stress and strain in 

isotropic plate is 
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where E is Young’s modulus, G is a shear modulus and ν 

is a Poisson’s ratio. When Eq.(1) is integrated through the 

thickness after multiplying a thickness coordinate z, one 

gets moment resultants in terms of curvature 
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If one considers the small amplitude (linear) free 

vibration of plate, the deflection w  may be written by 

         tyxWtyxw sin),(),,( =                               (4) 

where W is the amplitude and ω is a radian frequency of 

the plate.  Then, the maximum strain energy due to the 

bending is expressed by 
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where the Dij are the bending stiffnesses and    is a 

curvature vector 
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The maximum kinetic energy is also given by 
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where ρ [kg/m3] is the mass per unit volume.    

For the sake of simplicity, non-dimensional quantities 

are introduced as 
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Next, we consider the energy stored in the elastic 

restraints (translational elastic springs). The energy 

equation is written as 
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by where kti

 

(i=1,2,3,4) are stiffness of translational springs 

in unit [N/m2] per unit edge length. This energy is added 

to the elastic bending energy (5). 

 The next step in the Ritz method is to assume the 

amplitude as 
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where Amn are unknown coefficients, and )(mX  and

)(nY  are the functions modified so that any kinematical 

boundary conditions are satisfied at the edges [4], [5].   

After substituting Eq.(10) into these energies, the 

stationary value is obtained by 

            ( ) max max ,max 0t

mn

T U U
A


− + =


   

 ( 0,1,2,..( 1); 0,1,2,...( 1)m M n N= − = − )     (11) 

Then the eigenvalue equation that contains a frequency 

parameter Ω is derived as  

( ) 

1 1
(2200) 2 (2002) (0220) 4 (0022)

11 12 22

0 0

2 (1111) 2 (0000)

66

( )

4 Spring term 0

M N

m n

mnmmnn

d I d I I d I

d I I A

 



− −

= =

 + + +

+ + − =

 

・

 

( 0,1,2,..( 1); 0,1,2,...( 1)m M n N= − = − )    (12) 

 



EPI International Journal of Engineering, Vol. 6 No. 1, Feb 2023, pp. 9-17  

11 

 

where an integral I is the products   
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and (Spring term) is the line integral along an edge. 

Equation (12) is a set of linear simultaneous equations in 

terms of the coefficients Amn, and the eigenvalues Ω may 

be extracted by using existing computer subroutines. 

The analytical procedure developed thus far is a 

standard routine of a Ritz method, and the modification is 

explained next so as to incorporate arbitrary edge 

conditions into the amplitude W(ξ,η).  In the traditional 

approach using the beam functions for )(mX  and )(nY , 

many different products of regular and hyper trigonometric 

functions exist for arbitrary conditions and it is difficult to 

make a unified subroutine to calculate all kinds of integrals.   

The present approach uses simple polynomials 

        ( ) m

mX  = ,  ( ) n

nY  =                 (15) 

to represent freely supported plates as a base, and the 

integrals (13) can be exactly calculated. 

 

2.2. Finite element formulation of edge spring 

A finite element is newly developed to include the 

effect of translational springs distributed along the edges, 

and the finite element code (FEM code) is made to 

compare the result with the Ritz solution to establish 

accuracy of both methods. Formulation of plate bending 

element and kinetic element are already explained in Ref. 

[20]. Here only formulation of the edge spring element is 

shown. 

The deflection inside the element including boundary 

is assumed by 

( )   W x,y,t P sin t =                   (16) 

where {P} and {α} are (T: transpose) 
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and the displacements of four nodes labelled as i,j,k and l 

in a rectangular element can be expressed as 
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Using [C] which is obtained by substituting Eq.(16) 

into the four sets of node coordinates, W is transformed as 
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For example, when the translational spring is 

distributed along Edge(2) or Edge(4) at y y= , equation 

(20) is substituted into the second or fourth term of Eq.(9) 

and  
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(i=2,4) is obtained, where [Kti] is a finite element of 

translational edge spring 
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with ( ),P x y  being a function of ( ),x y  at fixed

/ 2y b= −  or / 2y b=  for Edge(2) and Edge (4), 

respectively. Spring finite elements along Edge(1) and 

Edge(3) can be formulated in the same manner. 

 

Figure 2. Numerical examples Ex.1-Ex.9 (TS: edge with translational 

spring, F: free edge, S: simple supported edge) 

Table 1. Convergence of the present (a) Ritz solution and (b)FEM 

solution for square plates elastically supported at one edge (Ex.1) 

 

                                                      

                                                                 

            

Ex.1 TS-F-F-F         Ex.2 TS-TS-F-F          Ex.3 TS-F-TS-F 

 

 

                                            

                          

Ex.4 TS-TS-TS-F        Ex.5 TS-TS-TS-TS       Ex.6 TS-S-F-F  

 

 

                                                   

                          

Ex.7 TS-S-S-F           Ex.8 TS-S-F-S           Ex.9 TS-S-S-S  

 k t
＊  Ω１ Ω2 Ω3 Ω4 Ω5

(a) Present Ritz solution

6×6 5.557 12.63 19.71 23.59 32.19

100 8×8 5.557 12.62 19.71 23.41 31.71

10×10 5.556 12.62 19.71 23.41 31.70

6×6 6.604 14.89 25.30 26.18 48.94

10000 8×8 6.602 14.86 25.24 25.92 48.02

10×10 6.601 14.86 25.24 25.92 48.01

(b) Present FEM solution

10×10 5.558 12.63 19.71 23.41 31.73

100 15×15 5.556 12.63 19.71 23.41 31.72

20×20 5.555 12.63 19.71 23.41 31.71

10×10 6.604 14.88 25.24 25.91 48.00

10000 15×15 6.602 14.87 25.24 25.91 48.00

20×20 6.600 14.87 25.24 25.91 48.00
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3. Numerical Examples and Discussions 

3.1. Convergence and comparison of the solution 

The plate is assumed to be made of isotropic material, 

and Young’s modulus E and Poisson’s ratio ν are included 

in the dimensionless frequency parameters Ω in Eq.(8). 

Poisson’s ratio ν=0.3 is used throughout in the paper. 

  Figure 2 illustrates numerical examples Ex.1-Ex.9 

with different degree of elastic constraints by translational 

springs (such edge is denoted by “TS”). When they have 

multiple translational springs on the edges, it is assumed 

that all the springs have the same degree of constraint 

3 3 3 3
*

1 2 3 t4t t t t

a a a a
k k k k k

D D D D
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in the calculation, although they can be different.  

Ex.1 is a free plate with only one edge constrained by a 

translational spring. This plate shows three rigid body 

motions (RBM) for kt
*=0 (i.e., F-F-F-F plate), which are 

one out-of-plane translational motion and two rotational 

motions about two coordinate axes. These RBM’s are 

common at kt
*=0 in Ex.1-Ex.5. When kt

* becomes non-zero 

positive value and increased, Ex.1 starts to show only one 

rotational RBG but RBM’s of Ex.2-Ex.5 disappear. Ex.6-

Ex.9 have a translational spring on one edge and plural 

simply supported edges. Thus, Ex.1-Ex.9 cover most cases 

of plates with less edge constraints than an entirely simply 

supported plate. 

Table 1 summarizes convergence study for the present 

(a) Ritz solution and (b)FEM solution for square plates in 

Ex.1. For both types of solutions, kt
*=100 and 10000 are 

assumed. (a) Ritz solution uses the number of series terms 

6×6, 8×8, 10×10 in Eq.(10), and converge within four 

significant figures in most cases. In (b) FEM solution, the 

number of finite elements in x and y directions is increased 

as 10×10, 15×15, 20×20, and they also exhibit fast 

convergence in the four significant figures.  

 
Table 2. Frequency parameters of square plates (Ex.1 TS-F-F-F, ν=0.3) 

 

 
Figure 3. Variation of frequency parameters of square plate 

Versus spring stiffness (Ex.1) 

 

It is noted that both sets of results by the Ritz and FEM 

solutions agree very well. In previous references, a few 

papers [14,15] presented some results of plates with non-

zero constraints in both translational and rotational springs, 

but it seems that no results are available for the present 

case (i.e., free plate with only translational spring). In the 

following numerical results, the 10×10 term in (a) Ritz 

solution and the 20×20 element in (b) FEM are used. 

3.2. Frequency parameters of square plates 

Tables 2-10 present the lowest five frequency 

parameters for Ex.1-Ex.9, respectively, versus the 

increasing degree of translational springs as kt
*=0 (free 

edge), 1, 10, 100, 10000. In the limiting case of kt
*=∞ 

(infinity), the frequency values are available from Ref.[5] 

by replacing kt
*=∞ (TS) by simple support (S). It is seen in 

common that the frequencies are monotonically 

increasing, as TS edge starts from free edge kt
*=0 to 

strongly constrained edge kt
*=10000=104, and this edge 

(kt
*=104) practically gives the similar frequency value as 

the simple support.  

As previously stated, there are three RBM’s (rigid body 

motion) for F-F-F-F plate in Ex.1-5 (Tables 2-6), one 

RBM in Ex.6 (Table 7) and zero RBM in Ex.7-9 (Tables 

8-10) for kt
*=0.  Although such RBM’s disappear as the 

stiffness is increased, one RBM still remains in Ex.1 due 

to one rotational RBD along one edge support. 

Table 3. Frequency parameters of square plates (Ex.2 TS-TS-F-F, ν=0.3) 

 

 k t
＊ Ω１ Ω2 Ω3 Ω4 Ω5

0 Ritz 13.47 19.60 24.27 34.80 34.80

F-F-F-F FEM 13.47 19.60 24.28 34.80 34.80

Ritz 0.990 1.990 13.57 19.66 24.32

FEM 0.999 1.990 13.57 19.67 24.33

Ritz 2.886 6.001 14.45 20.26 24.82

FEM 2.886 6.001 14.45 20.26 24.82

Ritz 5.556 12.62 19.71 23.41 31.70

FEM 5.555 12.63 19.71 23.41 31.71

Ritz 6.601 14.86 25.24 25.92 48.01

FEM 6.600 14.87 25.24 25.92 48.01

infinity Ritz 6.643 14.90 25.38 26.00 48.45

S-F-F-F FEM 6.643 14.91 25.38 26.00 48.46

1

10

100

10000

 k t
＊ Ω１ Ω2 Ω3 Ω4 Ω5

0

F-F-F-F

1 Ritz 0.5858 1.990 2.363 13.67 19.73

10 Ritz 1.640 6.008 7.108 15.37 20.94

100 Ritz 2.887 13.18 15.29 24.56 31.03

10000 Ritz 3.348 17.18 19.22 37.72 50.74

infinity

S-S-F-F
51.04

Ritz 13.47 19.60 24.27 34.80 34.80

Ritz 3.368 17.32 19.29 38.21
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Figure 4. Variation of frequency parameters of square plate versus 

spring stiffness (Ex.2) 

 
Table 4. Frequency parameters of square plates  

(Ex.3 TS-F-TS-F, ν=0.3) 

 

 
Figure 5. Variation of frequency parameters of square plate 

versus spring stiffness (Ex.3) 

 
Table 5. Frequency parameters of square plates  

(Ex.4 TS-TS-TS-F, ν=0.3) 

 

 
Figure 6. Variation of frequency parameters of square plate versus 

spring stiffness (Ex.4) 

Table 6. Frequency parameters of square plates 

(Ex.5 TS-TS-TS-TS, ν=0.3) 

 

Figure 7. Variation of frequency parameters of square plate versus 

spring stiffness (Ex.5) 

In the first five examples of Ex.1-Ex.5 where three 

RBM’s are observed at kt
*=0, Tables 2-6 summarize values 

of the lowest five frequency parameters (zero frequencies 

at kt
*=0 are excluded), and to avoid misunderstanding, 

Figures 3-7 are accompanied to demonstrate continuous 

variation of frequency parameters from kt
*=0 to kt

*=∞ 

(infinity).  

In Table 2, for example, frequency values in Ex.1 are 

presented and they show the good agreement again 

between the present Ritz and FEM solutions. The 

discrepancy between both solutions is less than 0.05 

percent, except for only one case of 0.9 percent. Variation 

of the frequency parameters is plotted in continuous 

(piece-wise linear) lines in Fig.3, and in this case two 

RBM’s become non-zero frequencies with the increase in 

 k t
＊ Ω１ Ω2 Ω3 Ω4 Ω5

0

F-F-F-F

1 Ritz 1.402 1.410 2.447 13.67 19.73

10 Ritz 4.104 4.326 7.650 15.34 20.82

100 Ritz 8.063 10.73 21.64 25.25 25.68

10000 Ritz 9.603 15.94 36.14 38.60 46.07

infinity

S-F-S-F
46.74

Ritz 13.47 19.60 24.27 34.80 34.80

Ritz 9.631 16.13 36.73 38.95

 k t
＊ Ω１ Ω2 Ω3 Ω4 Ω5

0

F-F-F-F

1 Ritz 1.403 2.439 2.640 13.77 19.80

10 Ritz 4.163 7.435 8.185 16.21 21.51

100 Ritz 8.872 17.45 22.41 29.46 33.43

10000 Ritz 11.60 27.34 40.75 57.78 60.80

infinity

S-S-S-F
61.86

Ritz 13.47 19.60 24.27 34.80 34.80

Ritz 11.68 27.76 41.20 59.07

 k t
＊ Ω１ Ω2 Ω3 Ω4 Ω5

0

F-F-F-F

1 Ritz 1.986 2.825 2.825 13.87 19.86

10 Ritz 5.928 8.813 8.813 17.01 22.10

100 Ritz 13.00 24.66 24.66 33.54 37.00

10000 Ritz 19.50 48.47 48.47 76.43 95.96

infinity

S-S-S-S
98.70

Ritz 13.47 19.60 24.27 34.80 34.80

Ritz 19.74 49.35 49.35 78.96
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stiffness. Similarly in Tables 3-6 list up the frequency 

parameters obtained by the Ritz solution in Ex.2-Ex.5, 

respectively. There are three RBM’s at kt
*=0. They 

disappear as the stiffness is added, and such modes have 

non-zero frequencies. Generally speaking, the frequency 

values at kt
*=10000 and kt

*=(infinity) give almost same 

values but slight difference occurs as more springs are 

added (i.e., Ex.1→Ex.5). 

Table 7. Frequency parameters of square plates (Ex.6 TS-S-F-F, ν=0.3) 

 

Table 8. Frequency parameters of square plates  

(Ex.7 TS-S-S-F, ν=0.3) 

 

Table 9. Frequency parameters of square plates  

(Ex.8 TS-S-F-S, ν=0.3) 

 

Table 10. Frequency parameters of square plates  

(Ex.9 TS-S-S-S, ν=0.3) 

 

 

Tables 7-10 list up similar sets of frequency parameters 

for square plates with one or more simply supported edges 

(Ex.6-Ex.9). Table 7 (Ex.6) gives the frequency parameter 

of square plates with elastic constraints between F-S-F-F 

(one RBM) and S-S-F-F, and once again the good 

agreement is assessed by using both present Ritz and FEM 

solutions. The maximum discrepancy is 1.1 percent and 

most of them are under 0.5 percent. Table 8 (Ex.7) gives 

sets of frequencies for square plates with two adjacent 

simple supported edges and elastic constraints between F-

S-S-F and S-S-S-F, and Table 9 (Ex.8) does sets of 

frequencies for square plates with the opposite edges 

simply supported and one edge with elastic constraint 

between F-S-F-S and S-S-F-S.  Table 10 (Ex.9) presents a 

set of frequencies of square plate with three edges simply 

supported and one elastic edge. In the limiting case of 

kt
*=infinity, the frequency parameters are obtained for S-

S-S-S plate. The maximum difference is 0.5 percent in 

Table 10. 

Thus, almost all the cases are summarized for square 

plates constrained by translational springs only, namely 

the natural frequencies are tabulated for the first time for 

square plates with elastic edge constraints less or equal to 

totally simply supported plates. 

3.3. Frequency parameters of rectangular plates 

For rectangular plates with different aspect ratios, the 

lowest five frequencies are calculated in Ex.1-Ex.5. Aspect 

ratio is taken at a/b=2/3 and a/b=1.5 in Table 11 and 12, 

respectively. As in the square plate, the plates are totally 

free (F-F-F-F) at kt
*=0. These are simply supported at one 

edge (Ex.1), two edges (Ex.2, 3), three edges (Ex.4) and 

four edges (Ex.5) in the limiting value of stiffness 

(kt
*=infinity), and among them, the exact solutions are 

available for Ex.3,4 and 5 where the opposite edges are 

simply supported (Levy type solution). 

 k t
＊ Ω１ Ω2 Ω3 Ω4 Ω5

0 Ritz 6.643 14.90 25.38 26.00 48.45

F-S-F-F FEM 6.643 14.91 25.38 26.00 48.46

Ritz 0.964 6.864 14.94 25.43 26.07

FEM 0.975 6.866 14.95 25.43 26.07

Ritz 2.341 8.656 15.29 25.91 26.76

FEM 2.341 8.656 15.30 25.91 26.76

Ritz 3.167 14.66 17.28 29.73 33.82

FEM 3.164 14.66 17.28 29.72 33.83

Ritz 3.360 17.25 19.27 37.98 50.88

FEM 3.361 17.25 19.26 37.94 50.90

infinity Ritz 3.368 17.32 19.29 38.21 51.04

S-S-F-F FEM 3.366 17.32 19.29 38.17 51.06

1

10

100

10000

 k t
＊ Ω１ Ω2 Ω3 Ω4 Ω5

0

F-S-S-F

1 Ritz 4.457 17.88 19.92 38.73 51.50

10 Ritz 5.916 18.33 20.09 38.67 51.39

100 Ritz 10.17 22.59 27.89 42.57 54.11

10000 Ritz 11.66 27.61 40.99 58.58 61.56

infinity

S-S-S-F
61.86

Ritz 3.368 17.32 19.29 38.21 51.04

Ritz 11.68 27.76 41.20 59.07

 k t
＊ Ω１ Ω2 Ω3 Ω4 Ω5

0

F-S-F-S

1 Ritz 9.693 16.23 36.78 38.96 46.77

10 Ritz 10.13 17.03 37.23 39.11 47.05

100 Ritz 11.25 22.28 39.99 42.02 49.60

10000 Ritz 11.68 27.68 41.17 58.83 61.47

infinity

S-S-F-S
61.86

Ritz 9.631 16.13 36.73 38.95 46.74

Ritz 11.68 27.76 41.20 59.07

 k t
＊ Ω１ Ω2 Ω3 Ω4 Ω5

0 Ritz 11.68 27.76 41.20 59.07 61.86

F-S-S-S FEM 11.69 27.72 41.21 58.93 61.74

 

Ritz 11.81 27.82 41.23 59.09 61.89

FEM 11.81 27.79 41.25 58.95 61.77

Ritz 12.79 28.43 41.55 59.34 62.19

FEM 12.79 28.40 41.56 59.20 62.06

Ritz 16.93 34.22 43.91 61.83 65.39

FEM 16.91 34.19 43.89 61.68 65.27

Ritz 19.70 49.09 49.23 78.39 97.67

FEM 19.68 48.99 49.13 77.98 97.44

infinity Ritz 19.74 49.35 49.35 78.96 98.70

S-S-S-S FEM 19.71 49.24 49.24 78.54 98.47

1

10

100

10000
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Table 11. Frequency parameter of rectangular plates  

(a/b=2/3, Ex.1-Ex.5, ν=0.3) 

 

Table 12. Frequency parameter of rectangular plates  

(a/b=1.5, Ex.1-Ex.5, ν=0.3) 

 

 k t
＊ Ω１ Ω2 Ω3 Ω4 Ω5

Ex.1

0

F-F-F-F

1 0.9792 1.990 9.093 9.576 20.67

10 2.621 5.997 10.05 10.45 21.25

100 4.062 11.39 13.36 16.40 25.56

10000 4.462 12.89 15.55 20.17 30.33

infinity

S-F-F-F

Ex.2

0

F-F-F-F

1 0.522 1.756 2.189 9.185 9.718

10 1.341 4.865 6.490 11.17 11.53

100 2.024 8.167 13.68 18.69 20.32

10000 2.225 9.498 16.63 24.42 26.82

infinity

S-S-F-F

Ex.3

0

F-F-F-F

1 1.401 1.407 2.447 9.248 9.635

10 4.104 4.252 7.652 10.60 11.67

100 8.105 9.652 15.62 21.67 23.35

10000 9.672 12.89 22.69 38.77 39.86

infinity

S-F-S-F

Ex.4

0

F-F-F-F

1 1.403 2.137 2.576 9.339 9.775

10 4.145 6.164 7.983 11.95 12.36

100 8.561 12.67 22.06 22.18 25.53

10000 10.63 18.13 33.29 39.76 47.73

infinity

S-S-S-F

Ex.5

0

F-F-F-F

1 1.802 2.440 2.703 9.429 9.910

10 5.153 7.465 8.407 12.96 13.00

100 10.46 17.88 23.23 27.20 28.22

10000 14.16 27.12 43.35 48.70 55.93

infinity

S-S-S-S

8.931 9.517 20.60 22.18 25.65

14.26 27.42 43.86 49.35 57.02

8.931 9.517 20.60 22.18 25.65

10.67 18.30 33.70 40.13 48.41

8.931 9.517 20.60 22.18 25.65

9.698 12.98 22.95 39.11 40.36

2.233 9.539 16.68 24.54 26.99

8.931 9.517 20.60 22.18 25.65

8.931 9.517 20.60 22.18 25.65

4.477 12.94 15.57 20.25 30.39

 k t
＊ Ω１ Ω2 Ω3 Ω4 Ω5

Ex.1

0

F-F-F-F

1 0.9944 1.989 20.16 21.51 46.38

10 3.030 6.001 20.71 22.39 46.72

100 7.116 12.65 24.93 31.04 50.10

10000 9.741 14.85 33.60 47.74 54.53

infinity

S-F-F-F

Ex.2

0

F-F-F-F

1 0.6536 2.174 2.696 20.27 21.55

10 1.916 6.607 8.353 21.75 22.75

100 3.935 15.02 22.42 31.53 33.62

10000 4.979 21.22 37.18 54.47 59.60

infinity

S-S-F-F

Ex.3

0

F-F-F-F

1 1.400 1.410 2.446 20.22 21.60

10 4.103 4.389 7.649 21.30 23.26

100 8.041 11.96 21.61 29.09 36.37

10000 9.528 21.18 38.37 53.69 64.59

infinity

S-F-S-F

Ex.4

0

F-F-F-F

1 1.405 2.734 2.823 20.33 21.64

10 4.181 8.483 8.801 22.31 23.60

100 9.306 23.08 24.40 35.84 37.88

10000 13.54 42.94 46.80 78.56 90.57

infinity

S-S-S-F

Ex.5

0

F-F-F-F

1 2.228 2.997 3.314 20.43 21.68

10 6.807 9.383 10.43 23.24 23.95

100 17.19 26.94 31.48 39.93 40.95

10000 31.43 59.74 95.06 106.5 120.9

infinity

S-S-S-S

20.10 21.41 46.35 49.91 57.71

32.08 61.68 98.70 111.0 128.3

20.10 21.41 46.35 49.91 57.71

13.71 43.57 47.86 81.48 92.69

20.10 21.41 46.35 49.91 57.71

9.559 21.62 38.72 54.84 65.79

20.10 21.41 46.35 49.91 57.71

5.026 21.46 37.53 55.22 60.74

20.10 21.41 46.35 49.91 57.71

9.846 14.89 33.91 47.95 54.78
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3.4. Mode shapes of square plates 

Elastic constraint on edges naturally affects mode 

shapes (nodal lines) of the plates, and as a representative 

case, Figure 8 shows effects of elastic constraint of the 

edge (x=-a/2) in Ex.6. In the figure, translation spring and 

simple support along Edge(1) and Edge(2) are illustrated, 

respectively, in each plate. Nodal lines (lines of zero 

deflection) is plotted in curved solid thick lines and the 

location of maximum amplitude is denoted by a circle “〇” 

in the figures.  

The mode shapes of F-S-F-F, TS-S-F-F (kt
*=10), TS-

S-F-F (kt
*=100) and S-S-F-F plates are presented in the 

first, second, third and fourth rows, respectively. For each 

value of kt
*, the lowest five modes are presented, but one 

RBM is removed in F-S-F-F plate. It is seen that as the 

stiffness is increased from kt
*=0 to kt

*=infinity, nodal lines 

are skewed because constraint from Edge(1) makes 

asymmetric. It is also easily recognized that the nodal line 

pattern of 1st mode in the first row becomes 2nd mode in 

the second, third and fourth rows. Likewise, the nodal line 

patterns of 3rd and 4th in the first row are taken over to 4th 

and 5th modes, respectively, in the lower rows. 

 

4. Conclusions 

In the literature survey by this author, it was found that 

the reasonable amounts of natural frequencies are already 

obtained  for rectangular plates  with rotational springs on 

the edges, but those of plates with translational springs has 

received sparse treatment. To remedy this lack in 

frequency data, this paper attempted to calculate 

frequencies by proposing a simple semi-analytical 

approach. Also a computation code by the finite element 

method was developed by the author.  

Numerical examples cover rectangular plates from 

totally free plate to totally simply supported on all edges. 

Nine numerical examples are presented in terms of 

different degree of elastic constraints. Tables and figures 

are provided in the examples with different aspect ratios. 

The contour plots are given to demonstrate effects of 

translational spring on mode shapes, 

It is hoped that these frequency data fill the existing 

gap and will be the useful structural design data involving 

plate components weakly coupled with supporting 

structure.  
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