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Abstract  

It is important to interpret resonance in the design to reduce the vibration of mechanical structures, and to verify this resonance phenomenon 

by experiments and theoretical approach. In the measurement for the vibration of a continuous system, the experience and skill of the observer 

affect the measurement accuracy of the natural frequencies and vibration modes. Therefore, in this study, a vibration measurement system is 

developed to stably and quantitatively verify the natural vibration of the beams using a microcontroller and an ultrasonic sensor. The vibration 
measurement system consists of a microcontroller, a vibration motor and an ultrasonic sensor. The accuracy and validity of the natural 

frequencies of the beams measured by the system are discussed, and the performance of present system is evaluated on the basis of the 

measurement results of the natural frequencies and the natural vibration waveforms.  
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1. Introduction  

Resonance phenomenon is an important issue in the 

design on the fields of machinery, construction, aerospace, 

and civil engineering. In order to reduce and control the 

vibration of the mechanical structures, it is important to 

comprehend the mechanism of vibration and verify the 

resonance phenomenon by experimental and theoretical 

means.  

For years, the vibration of the beam as a continuous 

system has been studied widely and actively. Dickey [1] 

discussed the free vibration and dynamic buckling of the 

beams under axial force by describing the solution of the 

equations of system. Thambiratnam and Zhuge [2] 

investigated the free vibration analysis of a stepped beam on 

an elastic foundation by using the finite element method. 

Tsai et al. [3]indicated the vibration analysis for a beam with 

distributed internal viscous damping by applying 

Timoshenko beam theory. Capozucca [4] treated the 

analysis of vibration of cantilever beams consist of dameged 

carbon fiber reinforced plastics. Wu et al. [5] proposed a 

method of analyzing beam vibration by tracking a laser 

stripe as non-contact measurement technique for vibration of 

the beams.  Lee [6] presented free vibration analysis of a 

laminated beam with delaminations using a layerwise theory. 

Lin [7]  presented the eigensolutions for an arbitrary number 

of cracks of a beam with various boundary conditions. Della 

et al. [8] solved analytically the vibration of beams with 

double delaminations without resorting to numerical 

approximation. Lee [9] analyzed mathematically the 

vibration characteristics of four parallel and uniform beams. 

Kerboua [10] presented the control and reducion the 

vibration of beams using smart materials. Sepehri-Amin et 

al. [11] investigated the vibration response of functionally 

graded and viscoelastic damped beams.  

On the other hand, the researches using a microcontroller 

have been actively reported in various engineering fields 

recently. Priohutomo et al. [12] discussed the design of 

maneuver controls using a microcontroller to avoid the ship 

from the collision. Sitanayah et al. [13] designed and 

implemented a low-cost wireless system to count the number 

of cars and motorcycles in a parking lot using the 

microcontroller. In addition, Putra et al. [14] showed the 

design and development of a simulator that can represent the 

earthquakes using a microcontroller, the hydraulic actuator 

and the three-axis accelerometer.  

In general, the vibration measurement of a continuous 

system requires an integrated system consists of such as 

accelerometers, vibrators, analyzers, oscillators and 

amplifiers. In addition, a system that supports to measure 

simply and comprehend intuitively the natural frequencies 
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and vibration modes of a continuous system is valid in the 

acquisition for the fundamental of vibration phenomenon.  

Therefore, in this study, a vibration measurement system 

consists of a microcontroller, a vibration motor and an 

ultrasonic distance sensor was developed to visualize and 

comprehend intuitively the natural frequencies and vibration 

modes of beams, which are one of continuous system.  

In particular, the natural vibration waveforms in time 

series for a cantilever beam have been measured by using the 

present system. Based on the comparison between the 

measured results and theoretical ones for the natural 

frequencies of the aluminum beams, the performance of the 

present system is evaluated and discussed.  

2. Test Piece and Modules   

2.1.  Test piece (Cantilever beam)  

Figure 1 shows an aluminum beam applied for vibration 

measurement on present system. Since the beam is flexible, 

it is appropriate for the detection of the amplitude (vibration 

displacement), and it is suitable for the verification of natural 

frequency and vibration mode of the beams. In addition, 

since a beam is thin form, it is able to observe the vibration 

displacement even if the excitation force is not powerful.  

2.2.  Microcontroller  

Arduino microcontroller demonstrates a superiority in 

developing the systems that use DC motor, stepper motor, 

LED diode, piezoelectric sounder and various sensors, etc. 

Therefore, as shown in Fig. 2, Arduino UNO having 16MHz 

ceramic resonator has been adopted in this study.  

2.3.  Ultrasonic sensor  

Figure 3 shows the ultrasonic distance sensor adapted on 

present system measuring the vibration displacement of the 

beam. The sensor has characteristics of operating frequency 

40kHz and a measuring distance range from 2cm to 400cm. 

The ultrasonic sensor enables the non-contact measurement 

of a beam vibration displacement.  

2.4.  Vibration motor  

Figure 4 shows the vibration motor adapted on present 

system exciting the beam at the resonance frequency. The 

motor exhibits maximum driving frequency 200Hz and an 

acceleration 1G at a rated voltage of 3V, and is characterized 

by its small size and large excitation force. The vibration 

motor has been mainly used to excite the second-order 

natural vibration of the beam.  

2.5.  Motor driver  

By using the DC motor driver with a bipolar type linear 

integrated circuit shown in Fig. 5, the vibration motor speed 

can be controlled using a variable resistor.  

 

 

 

 

 

 

Figure 1.  Geometry of an aluminum cantilever beam  

 

 

 

 

 

 

 

Figure 2.  Microcontroller (Arduino UNO)  

 

 

 

 

 

Figure 3.  Ultrasonic distance sensor (HC-SR04)  

 

 

 

 

 

 

 

Figure 4.  Vibration motor (Uxcell DC micromotor)  

 

 

 

 

 

Figure 5.  Motor driver (Toshiba TA7291P)  

3. Vibration Measurement System  

3.1.  System for exciting the beam  

Figure 6 presents the block diagram of system for exciting 

a beam. A vibration motor shown in Fig. 4 has been used for 

exciting the second-order natural vibration, and a DC motor 

with a reducer has been applied to induce the fundamental 

natural vibration of a beam. A program code to control the 

motor rotation speed (driving frequency) has been developed 

and applied to Arduino microcontroller. Present system can 

control the driving (excitation) frequency of the motor with 

a variable resistor. Also, the excitation frequency [Hz] of the 

motor can be indicated on the PC monitor. Furthermore, 

Figure 7 shows the circuit of the system for exciting a beam.  

 

 

Figure 6.  Block diagram of system for exciting a beam  
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Figure 7.  Circuit diagram of system for exciting a beam 

3.2.  System for measuring the vibration displacement   

Figure 8 gives the block diagram of system for measuring 

vibration displacement of a beam. Two ultrasonic sensors 

shown in Fig. 3 have been located to measure simultaneously 

the vibration displacement of a beam at multiple points. A 

program code to take in the vibration displacement of a beam 

has been developed and applied to Arduino microcontroller. 

The acquired displacement data are represented on the PC 

monitor. Figure 9 shows the circuit diagram for measuring 

vibration displacement of a beam. Ultrasonic distance 

sensors have been located near the amplitude of an excited 

beam, and the vibration displacement data have been 

acquired in time series. Also, the maximum frequency that 

can be measured with this system is around 100Hz. It is 

possible to observe up to the second-order vibration mode 

with aluminum beam length L= 220mm to 240mm.  

3.3.  Setting position of sensors and motor  

Figure 10 illustrates the setting position of the ultrasonic 

distance sensors and the vibration motor. Sensor-A and B 

have been located at the center and near the free end of the 

beam, respectively. In addition, the vibration motor has been 

attached with adhesive tape.  

 

 
Figure 8.  Block diagram of system for measuring vibration displacement 

of a beam  

 
Figure 9.  Circuit diagram of system for measuring  

vibration displacement of a beam  

 

Figure 10. Position of ultrasonic sensor and vibration motor  

 
Figure 11.  Discrimination for vibration mode of cantilever beam  

3.4.  Discrimination of vibration mode  

Figure 11 demonstrates the concept of discrimination of 

vibration mode of the beam. Considering the natural 

vibration mode shapes of cantilever beam, the fundamental 

and second-order natural vibration can be distinguished from 

type of waveform having the coordinate phase or antiphase.  

3.5.  Discrete Fourier transform   

The frequency spectrum of natural vibration displacement 

in time-series can be analyzed by the discrete Fourier 

transform (DFT) written in Eq. (1).  

Also, a program code for numerical calculation of the 

frequency spectrum was developed according to the flow 

chart of the DFT processing shown in Fig. 12.  
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3.6.  Experiment procedures and setting  

Experiment procedures for exciting and measuring of the 

beam by the present system are as follows:  

-  Adjust the variable resistor to drive the vibration motor 

and induce the natural vibration mode of the beam.  

- Observe and save the sampling data of the vibration 

displacement measured by the ultrasonic sensor on the PC 

monitor.  

-  Analyze the frequency spectrum (natural frequency) of 

the beam by applying the Fourier transform to the 

vibrational displacements in time-series.  

4. Measurement Results and Discussion  

In this section, the measurement results for the natural 

vibration of a cantilever beam acquired by present system 

are illustrated, and the performance of the system will be 

evaluated.  

Figure 13 gives the fundamental and second-order natural 

vibration displacements in time-series of the cantilever beam 

obtained by using present system. The vibration 

displacement waveforms measured by sensor-A and B show 

“Coordinate phase” in the case of fundamental natural 

vibration. Also, the vibration displacement waveforms show 

“Antiphase” in the case of second-order natural vibration. 

This phenomenon follows the concept of discrimination of 

vibration mode of a cantilever beam shown in Fig. 11.  

 

Figure 12.  Flowchart of DFT processing  

Figure 14 presents the results of the spectrum analysis by 

the discrete Fourier transform (DFT) for the natural 

vibration waveform in time-series shown in Fig. 13. The 

spectrum components of the fundamental and second-order 

natural frequencies detected by DFT analysis are 12.9Hz and 

78.3Hz at L=220mm, 11.9Hz and 73.8Hz at L=230mm, 

10.8Hz and 71.8Hz at L=240mm, respectively. As can be 

clearly seen in Fig. 14, each frequency spectrum components 

(natural frequencies) of the cantilever beam are expressly 

extracted even though there are countless noise frequency 

components.  

 

 

 

 

 

 

 

 

 

 

 

 

(a)  L=220mm  

 

 

 

 

 

 

 

 

 

 

 

 

(b)  L=230mm  

 

 

 

 

 

 

 

 

 

 

 

 

(c)  L=240mm  

 

Figure 13.  Natural vibration displacements of  

cantilever beams  
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(a) L=220mm  

 

 

 

 

 

 

 

 

 

 

 

 

 

(b) L=230mm  

 

 

 

 

 

 

 

 

 

 

 

 

 

(c)  L=240mm  

 

Figure 14.  Spectrum analysis for natural vibration displacements of 

cantilever beams  

 

Table 1 demonstrates comparisons of natural frequencies 

for cantilever beams. Theoretical(exact) solutions for natural 

frequencies of a cantilever beam are given in Ref. [15], and 

Young’s modulus 70GPa and the volume density 2700kg/m3 

have been employed as the material constants of the 

aluminum beam in the exact solutions. It is observed that the 

measured(DFT) results agree well with theoretical(exact) 

solutions, because the maximum relative difference between 

the measured results and exact solution is 8.1%. As can be 

seen, the accuracy and validity of the measured results can 

be confirmed from the view point of the results for these 

comparisons between the natural frequencies.  

Figure 15 indicates variations of natural frequencies with 

respect to the length of the cantilever beams. The exact 

solutions don’t include the axial elongation and contraction, 

the transverse shear deformation of the beam and the mass 

effect of the vibration motor attached the beam. Therefore, 

the exact solutions tend to be higher than the measured 

results. Also, it can be seen that the natural frequencies 

decrease as the length of the beam increases. In fundamental 

natural vibration, there is almost no effect of variation of 

beam length on the relative difference between the measured 

results and the exact solutions.  

Regarding second-order natural vibration, the relative 

difference between the measured results and the exact 

solutions seems to be larger for the shorter beam. From this 

tendency, it is guessed that the measured value is smaller 

than the exact solution, because the effect of transverse shear 

deformation is more pronounced for the shorter beam in the 

case of second-order natural vibration.  

5. Conclusions   

In this paper, the vibration measurement system for a 

cantilever beam has been presented, which consists of a 

vibration motor, a microcontroller and an ultrasonic distance 

sensor. The natural vibration waveforms in time series for a 

cantilever beam have been measured by using the present 

system. Also, the fundamental and second-order natural 

frequencies, which are the spectrum components of natural 

vibration waveforms of the cantilever beam have been 

detected by applying the discrete Fourier transform (DFT). 

Comparisons between the measured results and the 

theoretical(exact) solutions for the natural frequencies of 

cantilever beams have been demonstrated and discussed. 

The measured results agreed well with the theoretical 

solutions, and the accuracy and validity for the natural 

frequencies of the beams measured by the present system 

have been confirmed. Also, if the mass of the attached 

vibration motor could be included as locally point mass in 

the beam theoretical model, the theoretical solutions would 

be closer to the experimental results and more accurate.  

 
Table 1.  Comparisons of natural frequencies for  

cantilever beams   
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In addition, taking into account the identity taken from the 

comparisons of natural frequencies, the validity for the 

performance and the function with respect to the present 

vibration measurement system using a microcontroller has 

been evaluated.  

Present system has proposed a non-contact measurement 

technique of vibration displacement. It is expected that the 

measurement of higher-order natural frequencies of the 

beam will become possible if more sampling data for the 

vibration displacement can be acquired with microcontroller 

having high specification.  

The use of this system will be expanded if the measured 

vibration displacement data can be displayed on the PC 

monitor in real time, or if a communication module can be 

connected to the microcontroller to monitor remotely the 

measured data.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) Fundamental natural vibration  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(b) Second-order natural vibration  

Figure 15.  Variations of natural frequencies versus the length of 

cantilever beams  
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