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Abstract 

The Rayleigh-Ritz Method (RRM) is used extensively for the vibration analysis of structures. The accuracy depends on the assumed 

functions. In this work, we include both sine and cosine functions in the admissible functions, which is the first time to represent symmetric 

and anti-symmetric modes. Several different groups of functions are examined and compared for the accuracy of the resulting natural 

frequencies, and for the overall mode shape error norms calculated with respect to the known exact solutions. It is concluded that a set that 

combines low order polynomials, odd cosine and odd sine functions, or, even cosine and even sine functions, is more likely to yield the best 

accuracy and convergence of both frequency and mode shapes for a general beam structure. 
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1. Introduction 

The Rayleigh-Ritz method (RRM) [1]–[4] has been used 

extensively for structural vibration problems. A complete 

presentation of the method and its use was published [5]. The 

main factor in this method is the selection of the functions 

that are used to represent the system. Over the years several 

types of solution were offered: polynomial functions, 

trigonometric functions and combinations of these. 

Monterrubio and Ilanko [6] review these functions and 

consider a combination of low order polynomials and cosine 

functions. In this work several different sets of functions are 

compared for the problem of beam vibrations. The 

comparisons are presented for the two characteristics of the 

vibration problem: the natural frequencies (eigenvalues) and 

vibration modes (eigenvectors). For the first one can 

calculate a representative relative error, and the second will 

be assessed by defining a normalized error norm of the 

difference between the approximate vibration modes and the 

exact modes. 

The study is performed for the classical beam theory of 

Bernoulli-Euler, for which the exact vibration characteristics 

are known. The enforcement of boundary condition is 

performed by adding penalty matrices which account for all 

the 4 possible end restraints [5]–[8]. 

In past research the sets of functions that were used for 

the analysis include: (a) polynomial functions that exhibit 

fast convergence but are also prone to ill-conditioning, (b) 

polynomial functions that are improved by performing the 

Gram-Schmidt orthogonalization procedure [9], (c) Fourier 

cosine function with additional polynomial terms [10], and 

Fourier sine series with additional polynomial terms [11]. In 

all these studies the attention was focused on the vibration 

frequencies with no account for the vibration modes 

approximations. More recently, Koo et al. used polynomials 

to study the natural modes of a telescopic boom system with 

multiple sections. They obtained the first-mode natural 

frequency with an error of 4.6 % compared to FEM [12]. 
Bao et al. used two sine functions and several cosine 

functions to conduct a vibration analysis of nanorods [13]. 

They showed the accuracy of the results with eight terms, 

but the convergence of the results is not monotonic. Babaei 

investigated longitudinal vibration responses of axially 

functionally graded optimized MEMS [14]. They used sine 

functions or cosine functions depending on the boundary 

conditions considered. Ozbasaran evaluated the buckling 

analysis of the I-section prismatic beam–columns [15]. They 

considered three different series of admissible functions, 

namely power, trigonometric, and exponential trial 

functions. They used different forms for different restraint 

configurations. It was shown that the trigonometric series 

give better results compared to the power and exponential 
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series forms. Yang et al. presented a general approach for the 

free vibration analysis of a circular cylindrical shell resting 

on elastic foundation [16]. They used exact beam functions 

as admissible functions. The results showed good 

convergence and accuracy with 12 terms but only for the 

(1,1) mode. Mazanoglu proposed part by part usage of 

Timoshenko and Euler–Bernoulli beam theories for 

obtaining natural frequencies of the non-uniform beam [17]. 

The author also presented convergence tests to determine the 

proper function among the simple admissible shape 

functions, such as polynomial functions and trigonometric 

functions. It is shown that using 12 terms gives good 

accuracy, and trigonometric functions are superior to 

polynomial functions. Fakhar and Hosseini-Hashemi studied 

the static bending and free vibration behaviour of Euler 

nanobeams using the combination of polynomial and 

trigonometric functions [18]. They showed that using more 

terms gives more accurate results without ill conditions.  

Baruh and Tadikonda [19] have introduced the 

requirement for the admissible functions to satisfy the 

additional Complementary Boundary Conditions (CBC). 

These are defined as the relations that arise due to terms in 

the boundary expressions in the variational form of the 

equations. It was shown that if the set of admissible 

functions violate the CBC it is equivalent to imposing 

additional constraints on the solution that will result in slow 

convergence, or no convergence to the correct solution at all 

for some cases. This was taken care of in the formulations in 

[5] by adding terms that enable the enforcement of the CBC 

at the end of the beam. Most of the researchers in the past 

have used the RRM for plate vibration problems, however 

they introduced one dimensional (beam) functions in two 

directions to represent the assumed admissible surface of the 

plate. However, even for beams, unless the CBC are 

satisfied, sometimes it is not possible to get convergence to 

the correct solution as the function sets used may be over 

constrained [20].  

In the present work, the emphasis is put on beam 

vibration problems. We include both sine and cosine 

functions in the admissible functions to represent symmetric 

and anti-symmetric modes. It is shown that including both 

sine and cosine functions improves the accuracy of not only 

the natural frequencies but also of the mode shapes. 

In the next section a brief summary of the method is 

presented, followed by five function groups that are tested. 

Then the derivation of the stiffness, mass, and penalty 

matrices for the analysis is given. Numerical results are 

given for several modes and boundary conditions 

representative of all the possible cases. 

2. The Rayleigh-Ritz Method (RRM) for Beams 

For the sake of completeness, some derivations for beam 

vibration problems and the Rayleigh-Ritz method (RRM) 

are taken from [5] and presented here.  

 

 

For Bernoulli-Euler beams the equation of motion is 

 

𝐸𝐼
𝑑4𝑦(𝑥)

𝑑𝑥4
− 𝜌𝐴𝜔2𝑦(𝑥) = 0 (1) 

where, E:Young’s Modulus, I:Second moment of area, ρ: 

density, A: cross-sectional area, x:the axial coordinate,  

y:lateral displacement, ω: circular frequency of the beam 

respectively. 

We obtain the terms for the total potential energy and 

kinetic energy as  

 
𝑉𝑚 = ∫

𝐸𝐼

2

𝐿

0

(
𝑑2𝑦(𝑥)

𝑑𝑥2
)

2

𝑑𝑥 (2) 

 
𝑇𝑚 = 𝜔2 𝜓 = ∫

𝜌𝐴𝜔2

2

𝐿

0

(𝑦(𝑥))
2
𝑑𝑥 

(3) 

In the RRM the functions 𝑦(𝑥) are assumed as the sum 

of a series product of undetermined coefficients and 

admissible functions 𝜑𝑖(ξ), with ξ = 𝑥/𝐿 as the normalized 

coordinate along the member, given by 

 

𝑦(ξ) =  ∑ 𝐺𝑖𝜑𝑖(ξ)

𝑁

𝑖=1

 (4) 

In the RRM the natural frequencies are obtained as  

 
𝜔2 =

𝑉𝑚
𝜓𝑀

, (5) 

where  𝑉𝑚, 𝜓𝑀  are the maximum values of the potential 

energy and the kinetic energy function, respectively. 

As the Rayleigh Quotient (RQ) given by equation (5) 

gives an upper-bound to the natural frequencies, to obtain 

the best estimate of the natural frequencies we minimize the 

RQ w.r.t the undetermined displacement coefficients, G’s.  

 
𝜕𝜔2

𝜕𝐺𝑖

= 0     (6) 

for i=1, 2, .., N. This results in the following system of 

equations, 

 
[𝐾]{𝐺} − 𝜔2[𝑀]{𝐺} = {0} (7) 

with 

 
𝐾[𝑖, 𝑗] =

𝜕2𝑉𝑚
𝜕𝐺𝑖𝜕𝐺𝑗

 (8) 

 
𝑀[𝑖, 𝑗] =

𝜕2𝑇𝑚

𝜕𝐺𝑖𝜕𝐺𝑗

 
(9) 

 

The enforcement of the three cases of boundary 

condition, i.e. free (F), simply supported (S) and clamped 

(C), at the two ends of the beam is done using the penalty 

formulation (artificial springs) as derived by Ilanko et. al. 

[5]. The translational restraints (p1 and p3) and the rotational 

restraints (p2 and p4), shown in Figure 1, have a contribution 

to the system potential energy, and it results in the addition 

of the following matrix [P]  
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Figure 1. A beam with the translational and rotational restraints at its ends 

 

 𝑃[𝑖, 𝑗] = 𝑝1𝑃𝐼[𝑖, 𝑗] + 𝑝2𝑃𝐼𝐼[𝑖, 𝑗] 
+𝑝3𝑃𝐼𝐼𝐼[𝑖, 𝑗] + 𝑝4𝑃𝐼𝑉[𝑖, 𝑗] 

(10) 

 𝑃𝐼[𝑖, 𝑗] = 𝜑𝑖(ξ) ∙ 𝜑𝑗(𝜉)|𝜉=0 (11) 

 
𝑃𝐼𝐼[𝑖, 𝑗] =

𝑑𝜑𝑖(𝜉)

𝑑𝜉
∙
𝑑𝜑𝑗(𝜉)

𝑑𝜉
|𝜉=0 (12) 

 𝑃𝐼𝐼𝐼[𝑖, 𝑗] = 𝜑𝑖(𝜉) ∙ 𝜑𝑗(𝜉)|𝜉=1 
(13) 

 
𝑃𝐼𝑉[𝑖, 𝑗] =

𝑑𝜑𝑖(𝜉)

𝑑𝜉
∙
𝑑𝜑𝑗(𝜉)

𝑑𝜉
|𝜉=1 (14) 

 

and the values of pi, i=1...4 are taken to satisfy the end 

restraint, for example, p1 = p2 = 0 for free, p1 = 0 and p2 = ∞ 

for simply supported, and p1 = p2 = ∞ for clamped conditions 

respectively. (We can also set a numerical value for a 

specified spring stiffness for partial restraint). Then Eqn. (7) 

will have the final form 

 

 ([𝐾] + [𝑃]){𝐺} − 𝜔2[𝑀]{𝐺} = {0} (15) 

   

The solution of Eqn. (7) gives the normalized 

frequencies of vibration for the beam and the coefficients 𝐺𝑖 

that can then be used in Eqn. (4) to find the vibration modes. 

3. Function Groups 

For the vibration analysis of beams using the Rayleigh-

Ritz method the functions used will have to be able to satisfy 

all the standard boundary conditions that are at the two ends: 

Free (F), Simply Supported (S), Clamped (C), and Guided 

(G). The deflected shape of the beam at these locations is 

required to have zero deflection (S and C), zero slope (C and 

G), and zero curvature (S, F), or zero shear force (F, G) or a 

combination of these. The trigonometric functions cosine 

and sine can be used for some of the combinations and 

provide good approximations for the mode. Obviously for 

some boundary conditions they will give exact results, for 

example sine series for beams with simply supported ends 

and cosine series for beams with gliding ends. In some cases 

the use of these functions will make the compliance with the 

required boundary values more complicated, and a larger 

number of functions will be required for good results. These 

considerations were taken in the groups of functions that are 

proposed in this work. 

As the terms in the stiffness and mass matrices ([K] and 

[M]) involve integrals of multiplications of the selected 

functions, the use of the cosine and sine functions will have 

the benefit of orthogonality, such that for some of the 

integrals we shall have zero values, and in some, the 

resulting matrices will be diagonal. This will speed up the 

convergence and reduce the influence of numerical and 

round-off errors in the calculations. 

In order to be able to satisfy the boundary conditions it 

was shown in Ref. [5] that we need to have the following 

three functions: 

 𝜑1(ξ) = 1 

𝜑2(ξ) =  ξ 

𝜑3(ξ) =  ξ2 

(10) 

These three functions are needed to enable translations 

and rotations at the two ends of the beam segment. In 

addition to these three functions it is possible to add more 

functions that will improve the accuracy of the natural 

frequencies and the mode shapes of the beam. 

The choice of the additional functions is wide and several 

possibilities are examined in this work and are grouped as 

follows. All the groups will have the first 3 function φ1(ξ), 

φ2(ξ), and φ3(ξ) and some additional functions. 

(a) Function Group 1 – FG1: 

In this group we add the Fourier cosine series with N1 

terms: 

 𝜑𝑖+3(𝜉) =  cos(𝑖𝜋𝜉) ,      𝑖 = 1,2,3,…. , N1   (11) 

 

This series of functions was used in the calculations in 

Ref. [5]. 

 

(b) Function Group 2 – FG2: 

In this group we add the Fourier sine series with N2 

terms: 

 𝜑𝑖+3(𝜉) =  sin(𝑖𝜋𝜉) ,      𝑖 = 1,2,3, …., N2 

 
(12) 

This group is similar to FG1, however it is expected to 

yield faster and more accurate results for cases with 

hinged ends. 

 

(c) Function Group 3 – FG3: 

In this group we add the Fourier cosine and sine series 

with N3 terms: 

 𝜑2𝑖+2(𝜉) =  cos(𝑖𝜋𝜉),   
𝜑2𝑖+3(𝜉) =  sin(𝑖𝜋𝜉),     

𝑖 = 1,2,3, …., N3 

(13) 

 

This group is combining the previous two. 

 

(d) Function Group 4 – FG4: 

In this group we add only the odd terms in Fourier cosine 

and sine series with N4 terms: 

 𝜑2𝑖+2(𝜉) =  cos[(2𝑖 − 1)𝜋𝜉],   
𝜑2𝑖+3(𝜉) =  sin[(2𝑖 − 1)𝜋𝜉],  

𝑖 = 1,2,3…., N4  

(14) 

Using these functions we still preserve the orthogonality 

of the trigonometric functions as was the case for the 

FG1 and FG2 cases. Mass matrix has off-diagonal terms 

p1 

p2 

p3 

p4 
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only in the first three rows and columns which 

correspond to the terms involving the linear and square 

polynomials [6], and this helps to zero most of the off-

diagonal terms.  

 

(e) Function Group 5 – FG5: 

In this group we add the only the even terms in Fourier 

cosine and sine series with N5 terms: 

 

𝜑2𝑖+2(𝜉) =  cos(2𝑖𝜋𝜉),   
𝜑2𝑖+3(𝜉) =  sin(2𝑖𝜋𝜉), 

𝑖 = 1,2,3…., N5 

(15) 

In this group also, all the trigonometric functions in the 

group are orthogonal to each other, as was the case for 

the FG1 and FG2 groups. 

4. The Stiffness, Mass and Penalty Matrices 

In this section the matrices [K]j, [M]j and [P]j for the five 

function groups, j=1...5, (FG1 to FG5), are given as follows. 

All the matrices are symmetric so only the upper triangle 

will be given. The matrices are subdivided into 4 sub-

matrices as follows 

 

 [𝐾]𝑗 = 

[
 
 
 
 
 

𝐾𝐴𝐴,𝑗

(3 × 3)

𝐾𝐴𝐵,𝑗

(3 × 𝑁𝑓)

𝐾𝐵𝐴,𝑗

(𝑁𝑓 × 3)

𝐾𝐵𝐵,𝑗

(𝑁𝑓 × 𝑁𝑓)]
 
 
 
 
 

 (16) 

 

 [𝑀]𝑗 = 

[
 
 
 
 
 

𝑀𝐴𝐴,𝑗

(3 × 3)

𝑀𝐴𝐵,𝑗

(3 × 𝑁𝑓)

𝑀𝐵𝐴,𝑗

(𝑁𝑓 × 3)

𝑀𝐵𝐵,𝑗

(𝑁𝑓 × 𝑁𝑓)]
 
 
 
 
 

 (17) 

 

[𝑃]𝑗 = 

[
 
 
 
 
 

𝑃𝐴𝐴,𝑗

(3 × 3)

𝑃𝐴𝐵,𝑗

(3 × 𝑁𝑓)

𝑃𝐵𝐴,𝑗

(𝑁𝑓 × 3)

𝑃𝐵𝐵,𝑗

(𝑁𝑓 × 𝑁𝑓)]
 
 
 
 
 

 (18) 

 

where Nf is the number of functions taken in each function 

group (FG). The explicit terms in these matrices are given in 

Appendix 1. 

5. Orthogonality of the Admissible Functions 

The terms in the [K]j and [M]j involve integrations and 

differentiation of the assumed functions, as follows 

 
𝐾(𝑗, 𝑘) =  ∫

𝑑2𝜑𝑗

𝑑𝑥2

𝑑2𝜑𝑘

𝑑𝑥2

1

0

𝑑𝑥 (19) 

 
𝑀(𝑗, 𝑘) =  ∫ 𝜑𝑗

𝐿

0

𝜑𝑘  𝑑𝑥 
(20) 

 

where those for the penalty matrices involve evaluations of 

the functions at the boundary points (Eqs. 11-14). As was 

shown, in some function groups the functions are orthogonal 

and this will result in simpler K and M matrices, as follows: 

(a) FG1 –K matrix is diagonal, MBB is diagonal 

(b) FG2 – for this group we will have more complex terms, 

and some of the values in the penalty function related to 

the derivatives of the function will not be equal to zero. 

(c) FG3 – In using both sine and cosine terms (seemingly 

more complete expansion) the orthogonality of many 

terms is violated and many new terms will be present in 

all the matrices. This is expected to cause convergence 

difficulties and increase the relative errors. 

(d) FG4 – In this group the sine and cosine functions are 

taken as the orthogonal terms only, and one will expect 

better performance as the boundary conditions could be 

satisfied by fewer terms. 

(e) FG5 – This group is similar to the fourth group, and may 

have better performance for certain combinations of 

boundary conditions. 

The accuracy in the computation of the eigenvalues and 

eigenvectors is affected significantly by the structure of the 

matrices involved. The better FG which will be 

recommended is the one that result in smaller relative 

numerical errors in both the vibration frequencies and 

modes. 

6. Numerical Results and Discussion 

The natural frequencies and mode shapes are obtained 

using MATLAB. The comparison of the numerical accuracy 

of the various groups will be done using two comparison 

criteria: 

1. Relative error of the natural frequencies, compared 

to the exact solutions available in the existing 

literature [5], [21], and  

2. The magnitude of the error norm in the mode shape 

taken as 

 

‖ɛ(𝑁)‖ =
√∫ (𝑦𝑁(𝜉) − 𝑌𝑒𝑥(𝜉))

2
 𝑑𝜉

1

0

√∫ (𝑌𝑒𝑥(𝜉))
2
 𝑑𝜉

1

0

  (16) 

 

where 𝑌𝑒𝑥(𝜉) is the high accuracy mode shape for the 

particular set of boundary conditions given by Blevins [21], 

and N is the number of functions used for the solution. Both 

functions are normalized such that the maximum value of 

the deflection in a particular mode is equal one, so that one 

can obtain meaningful results for the norm. In the results that 

are presented, for each frequency the error norm is 

calculated with respect to the same exact known mode 

shape, and thus can be used for comparison within that 

group.  
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Table 2. Error norm of the normalized vibration modes – FF Beam 

N Nf FG1 

2* Nf C 

FG2 

2* Nf S 

FG3 

 Nf C+ Nf S 

FG4 

 Nf OC 
+ Nf OS 

FG5 

 Nf EC 
+ Nf ES 

ω1,exact = 4.73004074 

5 1 4.62E-03 2.18E-02 2.18E-02 2.18E-02 4.62E-03 

7 2 4.38E-04 1.83E-03 6.68E-04 1.83E-03 4.38E-04 

9 3 8.44E-05 3.65E-04 4.28E-05 3.65E-04 8.44E-05 

 ω2,exact = 7.85320462 

5 1 2.97E-01 1.05E-01 2.97E-01 2.97E-01 1.05E-01 

7 2 1.65E-02 1.16E-02 5.03E-02 1.65E-02 1.16E-02 

9 3 2.29E-03 2.72E-03 2.55E-03 2.29E-03 2.72E-03 

11 4 5.45E-04 9.07E-04 2.56E-04 5.45E-04 9.08E-04 

13 5 1.77E-04 3.74E-04 2.99E-05 1.77E-04 3.75E-04 

 ω3,exact = 10.9956078 

7 2 3.26E-02 8.59E-02 1.55E-01 8.60E-02 3.26E-02 

9 3 5.79E-03 1.22E-02 2.36E-03 1.22E-02 5.79E-03 

11 4 1.62E-03 3.39E-03 9.82E-05 3.40E-03 1.62E-03 

13 5 5.83E-04 1.27E-03 1.74E-05 1.27E-03 5.83E-04 

23 10 2.15E-05 5.82E-05 1.59E+00 5.82E-05 2.15E-05 

 ω4,exact = 14.1371655 

9 3 5.04E-02 3.44E-02 2.10E-01 5.04E-02 3.45E-02 

11 4 1.07E-02 1.06E-02 3.78E-03 1.07E-02 1.06E-02 

13 5 3.35E-03 4.25E-03 2.47E-04 3.35E-03 4.25E-03 

 ω5,exact = 17.2787597 

9 3 6.84E-02 1.46E-01 3.61E-01 1.46E-01 6.84E-02 

11 4 1.65E-02 2.64E-02 3.90E-02 2.65E-02 1.65E-02 

13 5 5.70E-03 8.79E-03 1.20E-03 8.79E-03 5.70E-03 

 ω10,exact = 32.98672 

15 6 1.56E-01 9.81E-02 7.69E-01 1.56E-01 9.82E-02 

17 7 5.85E-02 4.07E-02 3.23E-01 5.85E-02 4.08E-02 

23 10 1.49E-02 7.64E-03 1.59E+00 1.49E-02 7.70E-03 

 

Table 3. Relative error in frequency – CC Bean 

N Nf FG1 

2* Nf C 

FG2 

2* Nf S 

FG3 

 Nf C+ Nf 

S 

FG4 

 Nf OC 

+ Nf OS 

FG5 

Nf EC 

+ Nf ES 

ω1,exact = 4.73004074, Sym., Nmin = 5 

5 1 9.33E-01 1.91E-02 1.91E-02 1.91E-02 9.33E-01 
7 2 2.21E-01 1.04E-04 8.85E-05 1.02E-04 2.21E-01 
9 3 8.30E-02 -1.39E-05 -2.18E-05 -1.91E-05 8.30E-02 

11 4 3.96E-02 -2.31E-05 -2.61E-05 -3.02E-05 3.96E-02 
13 5 2.18E-02 -1.62E-05 -3.06E-05 -2.26E-05 2.18E-02 
23 10 3.15E-03 -5.42E-05 -2.41E-05 -3.96E-05 3.15E-03 

 ω2,exact = 7.85320462, A-Sym., Nmin = 7 

7 2 1.23E+00 1.31E+01 3.60E-02 1.23E+00 1.31E+01 
9 3 3.74E-01 7.99E+00 9.07E-04 3.74E-01 7.99E+00 

11 4 1.61E-01 5.74E+00 3.41E-05 1.61E-01 5.74E+00 
13 5 8.29E-02 4.48E+00 -3.03E-05 8.29E-02 4.48E+00 
23 10 1.05E-02 2.13E+00 -3.21E-05 1.05E-02 2.13E+00 

 ω3,exact = 10.9956078,  Sym., Nmin = 7 

7 2 1.30E+00 1.65E-01 1.27E+00 1.65E-01 1.30E+00 
9 3 4.70E-01 4.58E-03 8.30E-03 4.58E-03 4.70E-01 

11 4 2.22E-01 3.43E-04 6.84E-06 3.37E-04 2.22E-01 
13 5 1.22E-01 2.44E-05 -7.10E-05 1.36E-05 1.22E-01 
23 10 1.77E-02 -2.02E-05 -4.37E-05 -6.05E-05 1.77E-02 

 ω4,exact = 14.1371655,  A-Sym., Nmin = 9 

9 3 1.29E+00 1.03E+01 1.59E+00 1.29E+00 1.03E+01 
11 4 5.28E-01 6.84E+00 1.34E-02 5.28E-01 6.84E+00 
13 5 2.70E-01 5.13E+00 7.97E-05 2.70E-01 5.13E+00 
23 10 3.40E-02 2.27E+00 -5.97E-05 3.40E-02 2.27E+00 

 ω5,exact = 17.2787597, Sym., Nmin = 9 

9 3 1.26E+00 3.13E-01 4.82E+00 3.13E-01 1.26E+00 
11 4 5.61E-01 1.69E-02 1.46E-01 1.69E-02 5.61E-01 
13 5 3.05E-01 2.15E-03 1.75E-03 2.14E-03 3.05E-01 
23 10 4.38E-02 7.33E-05 7.96E-05 9.16E-05 4.38E-02 

 ω10,exact = 32.98672, Sym., Nmin = 10 

23 10 1.86E-01 2.79E+00 -1.95E-04 1.86E-01 2.79E+00 
33 15 5.47E-02 1.66E+00 -2.37E-04 5.47E-02 1.66E+00 
43 20 2.30E-02 1.18E+00 -4.83E+00 2.30E-02 1.18E+00 

 

In the numerical results for the different groups the 

number of functions that were used was the same, i.e. N = 

Ni + 3, with N1 = N2 = N4 = N5 = 2*Nf, and N3 = Nf. Using 

the penalty function to enforce the restraints results in the 

need for minimal number of functions in the analysis in 

order to obtain reliable results as some are used to satisfy the 

boundary conditions. For each of the cases presented below 

there is a different number, as the number of restraints is 

different. So, in the following presentation of the results this 

minimum number of functions is given for every frequency. 

The tables include the meaningful results for the cases and 

are given until the relative error is very small. For several of 

the cases we can identify symmetric and anti-symmetric 

modes and these are also pointed out in the tables. The type 

of functions in each column in the tables, is given where C 

stands for cosine functions, and S stands for sine functions. 

The letters O and E indicate odd functions only, and even 

functions only, respectively. 

 

(a) Free – Free Beam 

Tables 1 and 2 give the results for the F-F case where no 

penalty matrices are needed. It can be seen that the better 

convergence among the five FG, for both the value of the 

frequency and the error norm of the modes, is not the same 

for all the modes. It alternates between the FG1, FG4, and 

FG5 combinations, for the frequencies and between the FG1, 

FG2, and FG5 combinations for the normalized modal error, 

Table 1. Relative error in frequency - FF Beam 

N Nf FG1 
2* Nf C 

FG2 
2* Nf S 

FG3 
Nf C+ 

Nf S 

FG4 
Nf OC 

+ Nf OS 

FG5 
Nf EC 

+ Nf ES 

ω1,exact = 4.73004074, Sym., Nmin = 5 

5 1 1.48E-02 2.50E-01 2.50E-01 2.50E-01 1.48E-02 

7 2 6.12E-04 1.31E-02 1.42E-03 1.31E-02 6.12E-04 

9 3 6.67E-05 2.02E-03 1.91E-05 2.02E-03 6.67E-05 

ω2,exact = 7.85320462, A-Sym., Nmin = 7 

5 1 1.54E+01 1.11E+00 1.54E+01 1.54E+01 1.11E+00 

7 2 5.83E-02 8.79E-02 4.35E-01 5.83E-02 8.79E-02 

9 3 4.09E-03 1.73E-02 5.71E-03 4.09E-03 1.73E-02 

11 4 5.93E-04 5.07E-03 1.63E-04 5.93E-04 5.07E-03 

13 5 1.30E-04 1.89E-03 5.01E-06 1.30E-04 1.89E-03 

ω3,exact = 10.9956078,  Sym., Nmin = 7 

7 2 1.12E-01 6.21E-01 1.95E+00 6.21E-01 1.12E-01 

9 3 1.12E-02 6.52E-02 1.44E-03 6.52E-02 1.12E-02 

11 4 2.02E-03 1.55E-02 9.62E-06 1.55E-02 2.02E-03 

13 5 5.11E-04 5.15E-03 9.26E-07 5.15E-03 5.11E-04 

23 10 
6.14E-06 1.67E-04 

-

2.86E+01 1.67E-04 6.14E-06 

ω4,exact = 14.1371655,  A-Sym., Nmin = 9 

9 3 1.62E-01 2.01E-01 2.40E+00 1.62E-01 2.01E-01 

11 4 2.12E-02 5.51E-02 2.11E-03 2.12E-02 5.51E-02 

13 5 4.51E-03 2.02E-02 3.40E-05 4.51E-03 2.02E-02 

ω5,exact = 17.2787597, Sym., Nmin = 9 

9 3 2.05E-01 8.04E-01 5.72E+00 8.04E-01 2.05E-01 

11 4 3.26E-02 1.14E-01 1.21E-01 1.14E-01 3.26E-02 

13 5 7.93E-03 3.38E-02 3.36E-04 3.38E-02 7.93E-03 

ω10,exact = 32.98672, A-Sym., Nmin = 15 

15 6 3.11E-01 3.66E-01 1.98E+01 3.11E-01 3.66E-01 

17 7 8.66E-02 1.51E-01 2.36E+00 8.66E-02 1.51E-01 

23 10 
6.21E-03 2.48E-02 

-

9.52E+00 6.21E-03 2.48E-02 
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dependent also on the mode being symmetric or anti-

symmetric for the particular frequency. 

(b) Clamped – Clamped Beam 

The results for this case are given in Tables 3 and 4. For 

this case results from the functions in FG4 are the best for 

both frequency and modal normalized errors. The results 

from FG1 and FG2 groups are equivalent to the best results 

from FG4, for the symmetric (FG2) and anti-symmetric 

(FG1).  

(c) Clamped – Simply Supported Beam 

The results for this case are given in Tables 5 and 6. This 

case in not symmetric in terms of boundary conditions as 

were the first two. Then, we expect that since the modes 

cannot be cast into symmetric and anti-symmetric classes, 

there is an advantage to the function groups that will include 

both sine and cosine functions (FG3, FG4, and FG5). In the 

results we can observe the FG3 performs the best for the 

lower frequencies and modes, but for the higher modes FG4 

has the advantage. This is explained by the fact that not all 

the functions in FG3 are orthogonal to each other, and as was 

the case for other studies, in such cases numerical accuracy 

is affected significantly from the large number of off 

diagonal terms in the matrices, when the number of function 

in the group is increased. 

 
Table 4. Error norm of the normalized vibration modes – CC Beam 

N Nf FG1 
2* Nf C 

FG2 
2* Nf S 

FG3 
 Nf C+ Nf S 

FG4 
 Nf OC 

+ Nf OS 

FG5 
 Nf EC 

+ Nf ES 

ω1,exact = 4.73004074 

5 1 5.37E-02 8.09E-03 8.10E-03 8.10E-03 5.37E-02 

7 2 9.47E-03 2.78E-04 2.76E-04 2.78E-04 9.47E-03 

9 3 3.99E-03 2.70E-05 3.05E-05 2.70E-05 3.99E-03 

11 4 1.55E-03 4.68E-06 3.63E-06 4.65E-06 1.55E-03 

13 5 9.57E-04 1.30E-06 6.02E-06 1.33E-06 9.57E-04 

23 10 1.15E-04 7.40E-07 6.03E-07 5.50E-07 1.15E-04 

 ω2,exact = 7.85320462 

7 2 8.34E-02 3.05E-01 1.45E-02 8.34E-02 3.05E-01 

9 3 2.68E-02 1.81E-01 1.05E-03 2.68E-02 1.81E-01 

11 4 9.26E-03 1.20E-01 2.32E-04 9.26E-03 1.20E-01 

13 5 4.60E-03 9.11E-02 2.94E-05 4.60E-03 9.12E-02 

23 10 5.69E-04 4.24E-02 9.20E-07 5.69E-04 4.24E-02 

 ω3,exact = 10.9956078 

7 2 1.11E-01 4.06E-02 1.08E-01 4.06E-02 1.11E-01 

9 3 4.19E-02 4.56E-03 6.68E-03 4.57E-03 4.19E-02 

11 4 1.83E-02 5.94E-04 3.36E-04 5.94E-04 1.83E-02 

13 5 8.78E-03 1.95E-04 7.29E-05 1.95E-04 8.78E-03 

23 10 1.16E-03 2.76E-06 4.10E-06 3.21E-06 1.16E-03 

 ω4,exact = 14.1371655 

9 3 1.35E-01 4.46E-01 1.54E-01 1.35E-01 4.46E-01 

11 4 5.21E-02 2.86E-01 1.18E-02 5.21E-02 2.86E-01 

13 5 2.84E-02 2.13E-01 5.83E-04 2.84E-02 2.13E-01 

23 10 2.78E-03 8.88E-02 3.66E-06 2.78E-03 8.89E-02 

 ω5,exact = 17.2787597 

9 3 1.54E-01 8.85E-02 3.04E-01 8.86E-02 1.54E-01 

11 4 6.22E-02 1.14E-02 5.33E-02 1.14E-02 6.22E-02 

13 5 3.58E-02 3.34E-03 1.26E-03 3.34E-03 3.58E-02 

23 10 4.32E-03 2.91E-05 1.47E-05 2.92E-05 4.32E-03 

 ω10,exact = 32.98672 

23 10 3.34E-02 2.82E-01 2.45E-03 3.34E-02 2.82E-01 

33 15 9.32E-03 1.66E-01 2.30E-03 9.32E-03 1.66E-01 

43 20 5.34E-03 1.18E-01 1.31E+00 5.34E-03 1.18E-01 

 

(d) Clamped – Free Beam 

The results for this case are given in Tables 7 and 8. This 

case is also not symmetric and the results obtained from FG3 

are the best, subject to the restriction in the number of 

functions. Overall, for this case FG4 yields the best 

performance. 

 

As was shown in the numerical results, in each case the 

advantage is to either the FG4 or FG5 group. For Free-Free 

beam, FG1 also give as good results as FG4 or 5 does for the 

natural frequencies. However, for mode shapes, FG5 always 

gives the best results. The matrices that are used for both 

FG4 and FG5 have small differences, and one can choose 

which group yields better results by performing the 

calculation for both groups using a small number of 

members in each group (say 2 sine and 2 cosine terms). 

Comparing the results of these two analyses would reveal 

the better choice, and then the computations can be 

continued using that group. For plate problems, this strategy 

may yield much faster convergence and higher accuracy, and 

will be explored in future work. 

 
Table 5. Relative error in frequency – CS Beam 

N Nf FG1 

2* Nf C 

FG2 

2* Nf S 

FG3 

 Nf C+ Nf S 

FG4 

 Nf OC 
+ Nf OS 

FG5 

 Nf EC 
+ Nf ES 

ω1,exact = 3.926602, Nmin = 5 

5 1 5.24E-01 3.91E+00 2.03E-02 2.03E-02 4.49E+00 
7 2 1.21E-01 2.22E+00 1.64E-03 5.64E-03 2.35E+00 
9 3 4.49E-02 1.55E+00 4.23E-05 2.02E-03 1.59E+00 

11 4 2.13E-02 1.19E+00 1.17E-05 9.05E-04 1.21E+00 

13 5 1.17E-02 9.62E-01 5.74E-06 4.68E-04 9.74E-01 

 ω2,exact = 7.068528, Nmin = 7 

7 2 8.31E-01 2.40E+00 4.67E-03 8.26E-01 2.40E+00 
9 3 2.39E-01 1.63E+00 9.28E-04 2.36E-01 1.63E+00 

11 4 1.01E-01 1.23E+00 7.72E-04 9.91E-02 1.23E+00 
13 5 5.19E-02 9.92E-01 7.72E-04 5.09E-02 9.93E-01 
23 10 7.16E-03 5.02E-01 7.64E-04 7.01E-03 5.02E-01 

 ω3,exact = 10.210176,  Nmin = 7 

7 2 9.92E-01 2.70E+00 8.15E-01 2.53E-02 3.65E+00 
9 3 3.31E-01 1.72E+00 5.00E-03 5.87E-03 2.06E+00 

11 4 1.52E-01 1.28E+00 9.50E-05 3.53E-03 1.44E+00 
13 5 8.24E-02 1.02E+00 -5.83E-06 2.16E-03 1.11E+00 
23 10 1.16E-02 5.09E-01 -2.56E-05 3.33E-04 5.21E-01 

 ω4,exact = 13.351769,  Nmin = 9 

9 3 1.07E+00 1.86E+00 7.30E-01 1.08E+00 1.85E+00 
11 4 3.96E-01 1.34E+00 1.59E-03 3.94E-01 1.34E+00 
13 5 1.94E-01 1.06E+00 5.08E-05 1.92E-01 1.06E+00 
23 10 2.31E-02 5.17E-01 3.68E-05 2.26E-02 5.18E-01 

 ω5,exact = 16.493361, Nmin = 9 

9 3 1.12E+00 2.15E+00 3.64E+00 5.27E-02 3.06E+00 
11 4 4.44E-01 1.42E+00 9.40E-02 6.14E-03 1.85E+00 
13 5 2.29E-01 1.10E+00 4.96E-04 3.47E-03 1.32E+00 
23 10 3.08E-02 5.26E-01 -5.09E-05 7.62E-04 5.56E-01 

 ω10,exact = 32.20132, Nmin = 15 

15 6 1.06E+00 1.20E+00 1.58E+01 1.08E+00 1.16E+00 
17 7 5.33E-01 9.11E-01 2.89E+00 5.37E-01 9.04E-01 
23 10 1.49E-01 5.76E-01 -1.50E-04 1.48E-01 5.77E-01 
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Table 6. – Error norm of the normalized vibration modes – CS Beam 

N Nf FG1 

2* Nf C 

FG2 

2* Nf S 

FG3 

 Nf C+ Nf S 

FG4 

 Nf OC 

+ Nf OS 

FG5 

 Nf EC 

+ Nf ES 

ω1,exact = 3.926602 

5 1 2.69E-02 9.09E-02 7.87E-03 7.87E-03 1.08E-01 

7 2 4.85E-03 4.35E-02 8.67E-04 1.66E-03 4.61E-02 

9 3 1.77E-03 3.12E-02 8.99E-05 5.42E-04 3.21E-02 

11 4 8.51E-04 2.31E-02 9.47E-06 2.21E-04 2.35E-02 

13 5 4.15E-04 1.88E-02 5.26E-06 1.13E-04 1.90E-02 

 ω2,exact = 7.068528 

7 2 5.58E-02 9.82E-02 3.14E-03 5.43E-02 1.01E-01 

9 3 1.47E-02 6.49E-02 3.85E-04 1.45E-02 6.58E-02 

11 4 5.67E-03 4.75E-02 6.35E-05 5.44E-03 4.80E-02 

13 5 2.98E-03 3.83E-02 4.33E-05 2.84E-03 3.86E-02 

23 10 3.26E-04 1.91E-02 3.65E-05 3.11E-04 1.91E-02 

 ω3,exact = 10.210176 

7 2 7.52E-02 1.71E-01 9.76E-02 1.31E-02 2.14E-01 

9 3 3.05E-02 1.04E-01 6.34E-03 4.48E-03 1.20E-01 

11 4 1.19E-02 7.74E-02 4.32E-04 2.41E-03 8.33E-02 

13 5 6.28E-03 6.03E-02 9.51E-05 1.31E-03 6.30E-02 

23 10 7.98E-04 2.95E-02 8.87E-06 1.76E-04 2.99E-02 

 ω4,exact = 13.351769 

9 3 9.93E-02 1.58E-01 9.22E-02 9.92E-02 1.60E-01 

11 4 3.98E-02 1.08E-01 3.22E-03 3.84E-02 1.10E-01 

13 5 2.04E-02 8.52E-02 2.63E-04 1.98E-02 8.66E-02 

23 10 2.04E-03 4.05E-02 2.96E-06 1.92E-03 4.08E-02 

 ω5,exact = 16.493361 

9 3 1.19E-01 2.21E-01 3.07E-01 3.28E-02 2.84E-01 

11 4 4.78E-02 1.50E-01 5.21E-02 6.73E-03 1.71E-01 

13 5 1.63E-02 1.11E-01 5.99E-04 2.61E-03 9.83E-02 

23 10 3.15E-03 5.18E-02 7.01E-06 6.83E-04 5.33E-02 

 ω10,exact = 32.20132 

15 6 1.96E-01 2.48E-01 7.62E-01 2.00E-01 2.26E-01 

17 7 9.58E-02 1.92E-01 3.85E-01 9.57E-02 1.91E-01 

23 10 2.78E-02 1.16E-01 5.08E-04 2.65E-02 1.18E-01 

7. Summary and Conclusions 

In the vibration analysis of beams using the RRM the 

accuracy of the solution is highly dependent on the 

admissible functions that are used in the computations. Two 

factors are important in this regard: the ability of the set to 

satisfy the boundary conditions, and the number of functions 

that are required to obtain high accuracy. It is shown in this 

work that choosing a group of functions that are capable to 

model all the possible combinations will benefit the most. 

This is achieved by using the combined odd sine and odd 

cosine functions (FG4), or the combined even sine and even 

cosine functions (FG5), which is the first time both functions 

are included simultaneously in the admissible functions. In 

both, all the functions in the group are orthogonal, so one 

also preserves the high numerical accuracy that is obtained 

in the computation that is performed with diagonal matrices. 

In this work a new error norm for the mode shapes was 

also suggested at the first time. The proposed admissible 

functions give good accuracy also for the mode shapes. It 

was shown that it has great importance in the evaluation of 

functions which are used in the RRM, and will also be 

expanded for the analysis of plates in future work. 

 

Table 7. Relative error in frequency – CF Beam 

N Nf FG1 

2* Nf C 

FG2 

2* Nf S 

FG3 

 Nf C+ Nf S 

FG4 

 Nf OC 

+ Nf OS 

FG5 

 Nf EC 

+ Nf ES 

ω1,exact = 1.875104, Nmin = 5 

5 1 8.06E-02 3.64E+00 6.25E-02 6.25E-02 3.66E+00 
7 2 1.40E-02 2.12E+00 1.02E-03 9.35E-03 2.13E+00 
9 3 4.67E-03 1.50E+00 1.06E-05 2.88E-03 1.50E+00 

 ω2,exact = 4.694091, Nmin = 5 

5 1 7.33E-01 3.58E+00 5.37E-01 5.37E-01 3.79E+00 
7 2 1.58E-01 2.14E+00 1.83E-02 9.85E-02 2.20E+00 
9 3 5.51E-02 1.52E+00 5.52E-04 3.26E-02 1.54E+00 

11 4 2.50E-02 1.18E+00 3.65E-06 1.44E-02 1.19E+00 
13 5 1.34E-02 9.58E-01 -1.05E-05 7.50E-03 9.64E-01 

 ω3,exact = 7.854757, Nmin = 7 

7 2 5.61E-01 2.92E+00 1.81E-01 4.61E-01 3.03E+00 
9 3 1.63E-01 1.80E+00 6.29E-04 1.15E-01 1.85E+00 

11 4 7.03E-02 1.31E+00 8.40E-06 4.55E-02 1.34E+00 
13 5 3.68E-02 1.04E+00 1.19E-05 2.25E-02 1.05E+00 

23 10 4.88E-03 5.08E-01 1.61E-05 2.66E-03 5.11E-01 

 ω4,exact = 10.995541, Nmin = 7 
7 2 7.50E-01 2.41E+00 1.70E+00 6.16E-01 2.47E+00 
9 3 2.74E-01 1.50E+00 1.22E-02 1.50E-01 1.63E+00 

11 4 1.28E-01 1.17E+00 4.42E-04 6.79E-02 1.24E+00 
13 5 6.93E-02 9.65E-01 8.68E-07 3.67E-02 9.98E-01 
23 10 9.53E-03 5.02E-01 2.21E-05 4.98E-03 5.07E-01 

 ω5,exact = 14.137168, Nmin = 9 

9 3 6.89E-01 2.55E+00 1.96E+00 6.01E-01 2.64E+00 
11 4 2.53E-01 1.62E+00 6.58E-03 1.93E-01 1.68E+00 
13 5 1.26E-01 1.20E+00 4.83E-06 8.74E-02 1.24E+00 
23 10 1.59E-02 5.36E-01 2.96E-05 9.10E-03 5.43E-01 

 ω10,exact = 29.84513, Nmin = 13 

13 5 6.76E-01 1.75E+00 1.88E+01 8.09E-01 1.36E+00 
15 6 3.35E-01 8.57E-01 5.67E+00 1.86E-01 9.79E-01 
17 7 2.03E-01 6.95E-01 8.21E-01 9.51E-02 7.96E-01 
23 10 6.98E-02 4.97E-01 9.81E-05 3.21E-02 5.34E-01 
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Table 8. Error norm of the normalized vibration modes – CF Beam 

N Nf FG1 

2* Nf C 

FG2 

2* Nf S 

FG3 

 Nf C+ Nf S 

FG4 

 Nf OC 

+ Nf OS 

FG5 

 Nf EC 

+ Nf ES 

ω1,exact = 1.875104 

5 1 3.97E-03 4.19E-02 3.35E-03 3.35E-03 4.33E-02 

7 2 6.73E-04 2.40E-02 1.35E-04 4.93E-04 2.44E-02 

9 3 2.21E-04 1.68E-02 9.64E-06 1.47E-04 1.70E-02 

 ω2,exact = 4.694091 

5 1 6.42E-02 1.01E-01 6.22E-02 6.22E-02 1.20E-01 

7 2 1.15E-02 5.67E-02 3.32E-03 1.05E-02 5.95E-02 

9 3 3.71E-03 3.88E-02 2.86E-04 3.29E-03 3.98E-02 

11 4 1.61E-03 2.95E-02 2.95E-05 1.40E-03 3.00E-02 

13 5 8.33E-04 2.38E-02 3.59E-06 7.19E-04 2.40E-02 

 ω3,exact = 7.854757 

7 2 5.30E-02 1.23E-01 3.43E-02 5.00E-02 1.37E-01 

9 3 1.48E-02 7.63E-02 8.57E-04 1.31E-02 8.19E-02 

11 4 6.19E-03 5.60E-02 5.80E-05 5.21E-03 5.85E-02 

13 5 3.17E-03 4.44E-02 5.63E-06 2.58E-03 4.57E-02 

23 10 3.99E-04 2.19E-02 8.73E-07 2.99E-04 2.21E-02 

 ω4,exact = 10.995541 

7 2 1.05E-01 1.62E-01 1.77E-01 1.20E-01 2.31E-01 

9 3 3.55E-02 1.10E-01 7.73E-03 3.25E-02 1.26E-01 

11 4 1.57E-02 8.19E-02 8.64E-04 1.41E-02 8.82E-02 

13 5 8.19E-03 6.52E-02 1.20E-04 7.33E-03 6.83E-02 

23 10 1.04E-03 3.23E-02 3.27E-06 9.22E-04 3.27E-02 

 ω5,exact = 14.137168 

9 3 1.03E-01 1.90E-01 1.94E-01 1.03E-01 2.13E-01 

11 4 3.61E-02 1.24E-01 6.41E-03 3.43E-02 1.37E-01 

13 5 1.74E-02 9.42E-02 1.61E-04 1.60E-02 1.01E-01 

23 10 2.06E-03 4.38E-02 4.84E-06 1.74E-03 4.47E-02 

 ω10,exact = 29.84513 

13 5 1.92E-01 2.90E-01 7.42E-01 2.56E-01 4.14E-01 

15 6 8.90E-02 1.85E-01 2.33E+00 8.28E-02 2.56E-01 

17 7 5.27E-02 1.53E-01 1.85E-01 4.62E-02 1.90E-01 

23 10 1.74E-02 1.02E-01 2.29E-04 1.55E-02 1.12E-01 
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Appendix: Matrices for Function Groups FG1-5 

For all the matrices, the sub-matrices AA that include the 

first 3 rows and first 3 column of the stiffness, mass and 

penalty matrices are identical for all the function groups and 

are given by: 

[𝐾𝐴𝐴] =  [
0 0 0

0 0
𝑠𝑦𝑚. 4

] 

 

[𝑀𝐴𝐴] =  [

1 1/2 1/3

1/3 1/4

𝑠𝑦𝑚. 1/5

] 

 

[𝑃𝐴𝐴,𝐼] =  [
1 0 0
0 0 0
0 0 0

] ;        [𝑃𝐴𝐴,𝐼𝐼] =  [
0 0 0
0 1 0
0 0 0

] 

 

[𝑃𝐴𝐴,𝐼𝐼𝐼] =  [
1 1 1
1 1 1
1 1 1

] ;      [𝑃𝐴𝐴,𝐼𝑉] =  [
0 0 0
0 1 2
0 2 4

] 

     

1. Function group 1 (FG1): 

[𝐾𝐴𝐵]1 =[0]       ;      [𝐾𝐵𝐵]1 =

[
 
 
 
 
 
(𝜋)4

2
0 … 0

⋮
(2𝜋)4

2

⋱

⋮
⋮

0 ⋯
(𝑘𝜋)4

2 ]
 
 
 
 
 

 

[𝑀𝐴𝐵(1… 3, 𝑘)]1 =

[
 
 
 

0
cos(𝑘𝜋)−1

(𝑘𝜋)2

2 cos(𝑘𝜋)

(𝑘𝜋)2 ]
 
 
 

;            

[𝑀𝐵𝐵]1 =
1

2

[
 
 
 
 
1 0 … 0
0
⋮

1
1

1

⋮

0
0 … 0 1 ]

 
 
 
 

 

 

[𝑃𝐴𝐵,𝐼(1…3, 𝑘)]
1

= [
1
0
0
];          [𝑃𝐴𝐵,𝐼𝐼]1 = [𝑃𝐴𝐵,𝐼𝑉]

1
= [0] 

[𝑃𝐴𝐵,𝐼𝐼𝐼(1… 3, 𝑘)]
1

= cos(𝑘𝜋) [
1
1
1
];          

[𝑃𝐵𝐵,𝐼]1 =  𝐼;      

[𝑃𝐵𝐵,𝐼𝐼]1 = [𝑃𝐵𝐵,𝐼𝑉]
1

= 0  ; 

[𝑃𝐵𝐵,𝐼𝐼𝐼(𝑗, 𝑘)]
1

= cos(𝑗𝜋) cos(𝑘𝜋) ∙I 

 

2. Function group 2 (FG2): 

[𝐾𝐴𝐵(1 …3, 𝑘]2 = [

0 0
0 0

0 0 …
0 0 …

2

𝑘𝜋
0

2

𝑘𝜋
0 …

]       ;      

[𝐾𝐵𝐵]2 = [𝐾𝐵𝐵]1 

[𝑀𝐴𝐵(1… 3, 𝑘)]2 =

[
 
 
 

0 … …
(−1)𝑘+1

𝑘𝜋
…

𝑘2𝜋2−4

𝑘3𝜋3

−1

𝑘𝜋

(−1)𝑘+1

𝑘𝜋
… …

𝑘2𝜋2−4

𝑘3𝜋3

−1

𝑘𝜋
…]

 
 
 

;           

[𝑀𝐵𝐵]2 = [𝑀𝐵𝐵]1 

[𝑃𝐴𝐵,𝐼]2 = [𝑃𝐴𝐵,𝐼𝐼𝐼]2 = [0];     

[𝑃𝐴𝐵,𝐼𝐼(1…3, 𝑘)]
2

= [𝑃𝐴𝐵,𝐼𝑉(1…3, 𝑘)]
2

= (−1)𝑘+1 [
1
1
1
] 

[𝑃𝐵𝐵,𝐼]2 = [𝑃𝐵𝐵,𝐼𝐼𝐼]2 =  0;       

[𝑃𝐵𝐵,𝐼𝐼]2 = 𝐼 ;      [𝑃𝐵𝐵,𝐼𝑉]
2

= cos(𝑗𝜋) cos(𝑘𝜋) ∙ 𝐼  ;    

 

3. Function group 3 (FG3): 

[𝐾𝐴𝐵(1 …3, 𝑘)]3 = [
0
0
0
]   for k =odd 

[𝐾𝐴𝐵(1 …3, 𝑘)]3 = [
0
0

2𝑘𝜋(cos(𝑘𝜋) − 1)
]                 

for k = even 

     

𝐾𝐵𝐵,3(2𝑘 − 1,2𝑘 − 1) = (𝑘𝜋)4 𝑀𝐵𝐵,3(2𝑘 − 1,2𝑘 − 1) 

𝐾𝐵𝐵,3(2𝑘, 2𝑘) = (𝑘𝜋)4 𝑀𝐵𝐵,3(2𝑘, 2𝑘) 

𝐾𝐵𝐵,3(2𝑘 − 1,2𝑗) = (𝑘𝜋)2(𝑗𝜋)2 𝑀𝐵𝐵,3(2𝑘 − 1, 𝑗) 

[𝑀𝐴𝐵(1… 3, 𝑘)]3 =

[
 
 
 

0
cos(𝑘𝜋)−1

(𝑘𝜋)2

2 cos(𝑘𝜋)

(𝑘𝜋)2 ]
 
 
 

   for k =odd 

[𝑀𝐴𝐵(1… 3, 𝑘)]3 =

[
 
 
 
 

1−cos(𝑘𝜋)

𝑘𝜋
−cos(𝑘𝜋)

𝑘𝜋

(2−(𝑘𝜋)2) cos(𝑘𝜋)−2

(𝑘𝜋)3 ]
 
 
 
 

                 

for k = even 

 

 
 [𝑀𝐵𝐵]3 =

 

[
 
 
 
 

1

2
0

1

2

0
𝑗𝜋

(𝑖𝜋)2−(𝑗𝜋)2
(cos(𝑖𝜋) cos(𝑗𝜋) − 1)

−𝑖𝜋

(𝑖𝜋)2−(𝑗𝜋)2
(cos(𝑖𝜋) cos(𝑗𝜋) − 1) 0

⋱
⋱ ]

 
 
 
 

 

 

In the P matrices below:  (𝑘𝜋) =  𝜋, 2𝜋, 3𝜋… and  𝑖, 𝑗 =
1,2,3… 

 

[𝑃𝐴𝐵,𝐼]3 =  [
1 0
0 0
0 0

]                       [𝑃𝐴𝐵,𝐼𝐼]3 = [
0 0
0 𝑘𝜋
0 0

] 

[𝑃𝐴𝐵,𝐼𝐼𝐼]3 = cos(𝑘𝜋)  [
1 0
1 0
1 0

]   

[𝑃𝐴𝐵,𝐼𝑉]
3

= 𝑘𝜋 cos (𝑘𝜋) [
0 0
0 1
0 2

] 
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[𝑃𝐵𝐵,𝐼]3 = 𝐼                  [𝑃𝐵𝐵,𝐼𝐼]3 = [
0 0
0 (𝑘𝜋)2]; 

[𝑃𝐵𝐵,𝐼𝐼𝐼(𝑖, 𝑗)]3 = [
cos(𝑖𝜋) cos(𝑗𝜋) 0

0 0
]       

[𝑃𝐵𝐵,𝐼𝑉]
3

= [
0 0
0 (𝑖𝜋)(𝑗𝜋)cos (𝑖𝜋)cos (𝑗𝜋)

]; 

 

4. Function group 4 (FG4): 

For all the matrices in this group only odd values of the 

indices are used. 
[𝑀𝐴𝐵]4 = [𝑀𝐴𝐵]3  

[𝑀𝐵𝐵]4 = 
1

2
𝐼  

[𝐾𝐴𝐵]4 = [𝐾𝐴𝐵]3 
[𝐾𝐵𝐵(𝑖, 𝑖)]4 = (𝑖𝜋)4[𝑀𝐵𝐵(𝑖, 𝑖)]4 

All the P matrices are the same as FG3 but: (𝑘𝜋) =  𝜋, 3𝜋,
5𝜋… and  𝑖, 𝑗 = 1,3,5… 

 

5. Function group 5 (FG5): 

The matrices for this group are the same as for the group 4, 

but only even values are taken. The P matrices are the same 

as for FG3 with: (𝑘𝜋) =  2𝜋, 4𝜋, 6𝜋… and  𝑖, 𝑗 = 2,4,6… 

 

 
 


