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Abstract 

In this research, the authors developed an adaptive control method using deep reinforcement learning which is a kind of machine learning 

to suppress the vibration of smart structures. This method just requires information about the control response and input, and does not 

require numerical models for the controlled object to design the controller. We experimented to verify the effectiveness of this method. 

In this experiment, a smart structure fabricated by an aluminum plate and a piezoelectric actuator was used as a controlled object. Three 
kinds of reinforcement learning algorithms are employed, Deep Q Network (DQN), Deep Deterministic Policy Gradient (DDPG), and 

Twin Delayed DDPG (TD3), and the control performance is compared. As a result, we succeeded in reducing the 𝐻∞ norm of the 

frequency response to impulse disturbance by up to about 40 dB compared to the uncontrolled case. This demonstrates the applicability 

of the control method using deep reinforcement learning to adaptive vibration control.  
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1. Introduction 

Vibration control of mechanical structures is an 

important technology to prevent unexpected behavior and 

damage caused by vibration. In recent years, it has become 

difficult to achieve the desired vibration characteristics 

only by structural design due to the increasing 

performance of mechanical structures, and the importance 

of active vibration control technology has increased. 

Therefore, various control theories, such as classical 

control theory and modern control theory, have been 

developed and used in practice. However, many of these 

methods have problems such as the need to model the 

control target precisely and the deterioration of control 

performance when the surrounding environment or the 

system to be controlled changes. 

 As the potential use of artificial intelligence (AI) is 

widely discussed in many research fields [1], control 

utilizing machine learning, a type of AI technology, has 

also been attracting attention as a new control method that 

solves these problems. Machine learning is an analytical 

technique that uses a computer to learn a large amount of 

data to find useful patterns in the data [2]. By utilizing this 

technology for vibration control, it is possible to control 

an unknown control target by learning, without modeling 

the target. In addition, continuous learning is expected to 

suppress the degradation of control performance due to 

changes in the environment, including changes in the 

surrounding environment and the control target. The 

following are examples of research on vibration control 

methods using machine learning. Yang et al. performed 

vibration control of smart structures using multi-neural 

networks [3]. Honda et al. conducted adaptive vibration 

control using self-organizing maps [4]. 

In this study, we investigated vibration control using 

deep reinforcement learning in machine learning. 

Reinforcement learning is a technique in which a 

computer learns and acquires the optimal behavior for 

performing a task from experience by interacting with a 

dynamic environment in a trial-and-error manner [5]. In 

particular, deep reinforcement learning, which utilizes 

deep learning for conventional reinforcement learning, is 

characterized by its ability to handle complex problems 

with nonlinearities and has demonstrated performance that 

can beat human players in the field of games such as chess 

[6]. However, although there are some examples of 

applications of deep reinforcement learning in control, 

such as control of an inverted pendulum by reinforcement 

learning [7], [8] and parameter tuning of PID control [9], 

[10], there are few examples of vibration control of 

continuous bodies by reinforcement learning. Mu et. al. 

proposed flutter suppression method based on machine 

learning [11], and Samaitis et. al., evaluated adhesive bond 

quality based on machine learning and pulse-echo 

immersion data [12]. Therefore, to develop an adaptive 

vibration control method using deep reinforcement *Corresponding author. Tel.: +81-11-706-6415 
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learning, this study proposed and compared several 

vibration control methods using different reinforcement 

learning algorithms. 

To demonstrate that the reinforcement learning 

methods is effective vibration control method for the smart 

structure with continuous body, a smart structure 

consisting of a thin aluminum plate and piezoelectric 

actuators was employed as the control target. We applied 

a control method using deep reinforcement learning to this 

structure and conducted vibration control experiments to 

verify the effectiveness of this method. As a result, the 

controller was successfully constructed by learning 

without using any information about the control target, 

thus demonstrating the applicability of the method to 

adaptive vibration control. 

 

2. Controller Configuration using Deep Reinforcement 

Learning 

2.1. Reinforcement learning overview 

Reinforcement learning is a machine learning 

technique. In this method, a computer learns the best way 

to solve a problem by collecting information through 

interaction with its environment. A schematic diagram of 

reinforcement learning is shown in Fig. 1. In 

reinforcement learning, the subject that interacts with the 

environment is called an agent, which selects an action 

according to its own action selection rule (policy) based 

on the observed state of the environment (state) and acts 

against the environment. The agent then receives an 

evaluation of its action as a reward from the environment. 

The goal of reinforcement learning is to maximize this 

reward by learning and improving the strategy through 

interaction with the environment and to obtain the optimal 

strategy.  

 

Figure 1. Diagram of reinforcement learning 

 

Figure 2. DQN controller 

By applying reinforcement learning methods to 

vibration control, it is possible to adjust appropriate 

control inputs through learning, making model-free 

control possible. It is also possible to construct a system 

that can respond to changes in the control target and 

environment. However, since the control system is not 

designed using a detailed dynamic model of the controlled 

object, its control performance may be inferior to that of 

conventional models. 

The method that utilizes deep learning for 

reinforcement learning is called deep reinforcement 

learning. This method uses Deep Neural Networks 

(DNNs) to process information about states observed in 

the environment and to represent policies, and DNNs 

make it possible to store and update these models more 

efficiently. Widely used three types of deep reinforcement 

learning algorithms were used in this study: Deep Q 

Network (DQN), Deep Deterministic Policy Gradient 

(DDPG), and Twin Delayed DDPG (TD3). 

DQN is a deep reinforcement learning algorithm 

developed by DeepMind, Inc. in 2013 [13]. The algorithm 

uses a Q-network to learn an action-value function (Q-

function), which represents the value of each possible 

action in each state of the environment. After learning, the 

agent selects the action that maximizes the value of the Q-

network according to the observed state and maximizes 

the reward. Due to the algorithm of selecting the action 

that maximizes the Q-function from multiple actions, the 

number of actions handled is finite, so the action space 

becomes a discrete value. 

DDPG is proposed by Lillicrap et al. in 2015 [14]. This 

algorithm uses two networks for learning: an Actor-

network, which outputs actions based on the state 

observed from the environment as input, and a Critic 

network, which evaluates the Actor-network. The agent's 

behavior is determined by the output of the Actor-network. 

Therefore, unlike DQN, the action space becomes 

continuous. 

TD3 is an improved method of DDPG [15]. The basic 

method is the same as DDPG, but three additional methods 

called Clipped Double Q learning, Target Policy 

Smoothing, and Delayed Policy Update are added to 

stabilize the learning process. 

2.2. Controller configuration with DQN 

The smart structure that is the control object in this 

study is measured by its velocity and displacement by non-

contact sensors. Since a piezoelectric actuator is attached 

as the control device, the control input becomes the 

voltage. The controller shown in Fig. 2 was configured 

using a Q-network for vibration control by DQN. The state 

𝒔 given to the Q-network is set to 𝒔 = (𝑥𝑡, 𝑣𝑡) where 𝑥𝑡 is 
the displacement observed by the sensor and 𝑣𝑡  is the 

velocity. The action space 𝐴, which represents the set of 

actions that can be selected by the agent, is set to 𝐴 =
{−1,0,1} . The observed state 𝒔 = (𝑥𝑡, 𝑣𝑡)  and the 

selectable actions 𝑎 ∈ 𝐴  are used as inputs to the Q-

network, and the value of the Q function 𝑄(𝒔, 𝑎)  is 

computed for all 𝑎 . Then, the value 𝑎  that maximizes 
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𝑄(𝒔, 𝑎) is input to the actuator through an amplifier as the 

control input voltage. 

The reward 𝑟 given to the agent during learning is set 

to 𝑟 = −|𝑥𝑡+1| − 0.05|𝑎𝑡| where 𝑎𝑡 is the agent's control 

input and 𝑥𝑡+1 is the displacement at the next time step 

after the control input. The constant 0.05 was determined 

by trial and error by numerical experiment. From the first 

term, the reward increases as the absolute value of 𝑥𝑡+1 

decreases. This means that the agent learns to select 

control inputs that reduce the absolute value of 𝑥𝑡+1, and 

as a result, vibration suppression can be expected. In 

addition, the second term is smaller than the first term, so 

energy-saving and efficient control can also be expected. 

When learning and updating the controller, the Q-network 

is learned and updated based on the DQN algorithm using 

the above 𝒔, 𝑎, and 𝑟. 

2.3. Controller configuration with DDPG and TD3 

The controller shown in Fig. 3 is constructed using the 

Actor network for DDPG/TD3. The state 𝒔 input to the 

network is set to 𝒔 = (𝑥𝑡, 𝑣𝑡) as in the DQN case. The 

controller inputs 𝒔 observed from the target to the Actor 

network and calculates the output 𝜇(𝒔). In this case, −1 <
𝜇(𝒔) < 1 becomes continuous values. The output 𝑎 from 

the controller is 𝑎 = 𝜇(𝒔). This 𝑎 is input to the actuator 

through an amplifier as the control input voltage. The 

reward 𝑟 given to the agent during learning is defined as 

𝑟 = −|𝑥𝑡+1| − 0.05|𝑎𝑡| as in the DQN case. The above 𝒔, 

𝑎, and 𝑟 are used to train and update the Actor-network 

based on the DDPG/TD3 algorithm, and the controller is 

trained and updated. 

 

 

Figure 3. DDPG and TD3 controller 

 

Figure 4. Smart structure composed of Al plate and PZT actuator 

 

Figure 5. Diagram of the experimental system 

 

Figure 6. Experimental set-up 

3. Experiments 

3.1. Experimental setup 

The smart structure shown in Figure 4 was employed 

as the control object. In this study, we define a structure 

equipped with actuators that can generate control forces as 

a smart structure. Therefore, the structure consists of a 

piezoelectric actuator (PZT) attached to a flat aluminum 

plate. The dimensions of the aluminum plate are 300 mm 

long, 100 mm wide, and 1 mm thick. The piezoelectric 

actuator was glued to one side of the plate from 80 mm to 

180 mm from the top edge on the center line. The 

piezoelectric actuator M8514-P1 (Smart Materia) is 

employed here.  

A schematic diagram and picture of the experimental 

setup is shown in Figures 5 and 6. In this system, the smart 

structure is clamped by a vise attached to a vibration-

isolation table up to 50 mm from the bottom edge. A laser 

displacement senser (LDS) and a laser doppler vibrometer 

(LDV) were installed in front of and behind the smart 

structure to observe the displacement and velocity in the 

thickness direction at the center of the structure at a 

position 60 mm from the top edge. The observed 

displacement and the velocity are sent to the control PC 

through a low-pass filter and control board. The control 

PC calculates the control input according to the observed 

displacement and velocity and sends the signal to the 

power amplifier through the control board. The control 

input voltage is amplified by the power amplifier and 

applied to the piezoelectric actuator for control. The 

sampling frequency and the frequency of the control input 

are set at 100 Hz. 

3.2   Vibration control for impulse disturbance 

A voltage was applied to the piezoelectric actuator for 

0.01 s (one-time step) to simulate impulse excitation and 

vibrate the structure. After that, vibration control was 

performed using a controller for 5 seconds. Next, the 

controller was trained and updated based on the DQN, 

DDPG, and TD3 algorithms using measured displacement 

and velocity data. Vibration control experiments were then 

conducted again using the updated controllers. This was 

repeated 100 times for one episode. After that, vibration 

control experiments were conducted using the controllers 

PZT actuator 

Top Bottom 

LDV 

Vise 

LDS 
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that had been trained throughout the 100 episodes to verify 

the control performance. 

3.3  Vibration control for random disturbance 

Vibration control experiments were also conducted for 

random disturbances to confirm the control performances 

under more realistic environments. 

 
(a) Time response 

 
(b) Frequency response 

Figure 7. Control response to impulse disturbance (DQN). 

Table 1. Control result for impulse disturbance. 

 Displacement [mm] H∞ norm [dB] 

DQN  11.95 -18.67 

DDPG 5.27 -35.55 

TD3  5.47 -33.85 

W/O control 51.02 5.41 

 

 
(a) Time response 

 
(b) Frequency response 

Figure 8. Control response to impulse disturbance (DDPG). 

 
(a) Time response 

 
(b) Frequency response 

Figure 9. Control response to impulse disturbance (TD3). 

In this experiment, TD3 was used as the algorithm for 

control and controller training. To apply the random 

disturbance, a piezoelectric actuator for the disturbance 

was attached to the back side of the smart structure. The 

voltage signal following uniform random numbers was 

applied to the actuator for a period of 5 seconds. The 

controller was then trained for 100 episodes as in the 

vibration control experiment for impulse disturbances.  
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(a) Time response 

 
(b) Frequency response 

 

Figure 10. Comparison of TD3 with proportional control 

 

Table 2. Control results for random disturbance 

 Displacement [mm] H∞ norm [dB] 

TD3  13.82 -34.78 

W/O control 102.91 20.34 

4. Result and Discussion 

4.1 Results for impulse disturbance 

Figures 7-9 show the time and frequency responses of 

displacement when using controllers configured with the 

DQN, DDPG, and TD3 algorithms, respectively. The 

amplitude of vibration for each method is much smaller 

than that for the uncontrolled method, indicating that the 

vibration was successfully controlled by the control 

method. The total displacement and H∞ norm of the 

displacement are listed in Table 1. From the table, the 

control performance using DDPG and TD3 are higher than 

that using DQN. This is because the control input of DQN 

is discrete, whereas DDPG/TD3 has a continuous control 

input, providing a more optimal control input. 

On the other hand, there was no significant difference 

in control performance between DDPG and TD3. This is 

because the two algorithms are similar, and the problem 

treated in this study was relatively simple, so the 

advantages of TD3, such as its high learning stability, were 

not fully utilized.  

 

 
(a)Time response 

 
(b) Frequency response 

Figure 11. Control response to random disturbance 

Figure 10 compares the time and frequency responses 

of displacement when using the controller with TD3 and 

using the simple proportional controller. The gain of the 

proportional controller was set so that the maximum value 

of the control input matches that of the controller using 

reinforcement learning. From Figure 10, it is known that 

the TD3 control method achieves faster vibration damping 

and lower peak than the proportional control method. 

Therefore, it can be said that the TD3 control method 

indicates higher control performance than the simple 

proportional control. 

4.2 Results for random disturbance 

The time and frequency responses of the displacements 

with the TD3 controller, after learning against the random 

disturbance was completed, are shown in Figure 11. The 

total displacement and the H∞ norm of the displacement 

are listed in Table 2. The vibration amplitude is 

significantly suppressed compared to the uncontrolled 

case, and the H∞ norm is reduced by about 55 dB. This 

indicates that the present controller is effective to suppress 

the vibration caused by random disturbances. 

5.  Conclusions 

In this study, we proposed a controller configuration 

method for an unknown control target based on three 

different deep reinforcement learning algorithms. 

Vibration control experiments were conducted on a smart 

structure consisting of an aluminum plate and 
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piezoelectric actuators to verify the learning and control 

performance of these methods. Since the method is model-

free, it is applicable to other continuum smart structures. 

Vibration control experiments against impulse 

disturbances were conducted using controller 

configuration methods based on the DQN, DDPG, and 

TD3 algorithms. As a result, the H∞ norm of the response 

of the controller with the DQN was about 24 dB lower than 

that without control, and the controllers with the DDPG 

and TD3 algorithm were about 40 dB lower than that 

without control.  

Vibration control experiments against random 

disturbances were also conducted to verify the 

performance assuming under more realistic conditions. 

The controller based on TD3 was used. As a result, the H∞ 

norm of the frequency response was successfully reduced 

by about 55 dB after the controller completed training 

compared to the uncontrolled case. This result confirms 

that the proposed method is applicable to random 

disturbances. 

References 

[1] M. Soori, B. Arezoo, and R. Dastres, “Artificial intelligence, 

machine learning and deep learning in advanced robotics, a 

review,” Cogn. Robot., vol. 3, pp. 54–70, 2023. 

[2] S. Raschka, Python Machine Learning, 2nd Edition. Packt 

Publishing, 2017. 

[3] S. M. Yang and Y. J. Lee, “Vibration Control of Smart Structures 

by Using Neural Networks,” J. Dyn. Syst. Meas. Control, vol. 119, 

no. 1, pp. 34–39, 1997. 

[4] S. Honda, Y. Narita, and N. Kida, “Adaptive control for vibration 

suppression by using self-organization map,” 10th Asian Control 

Conf., 2015. 

[5] Y. Li, Deep Reinforcement Learning: An Overview. 2017. 

[6] D. Silver et al., “A general reinforcement learning algorithm that 

masters chess, shogi, and Go through self-play,” Science, vol. 362, 

no. 6419, pp. 1140–1144, 2018. 

[7] W. Linglin, L. Yongxin, and Z. Xiaoke, “Design of reinforce 

learning control algorithm and verified in inverted pendulum,” 

34th Chinese Control Conf., 2015. 

[8] G. Puriel-Gil, W. Yu, and H. Sossa, “Reinforcement Learning 

Compensation based PD Control for Inverted Pendulum,” 15th 

Int. Conf. Electr. Eng. Comput. Sci. Autom. Control, 2018. 

[9] X. Wang, Y. Cheng, and W. Sun, “A Proposal of Adaptive PID 

Controller Based on Reinforcement Learning,” J. China Univ. 

Min. Technol., vol. 17, no. 1, pp. 40–44, 2007. 

[10] Y. Qin, W. Zhang, J. Shi, and J. Liu, “Improve PID controller 

through reinforcement learning,” IEEE CSAA Guid. Navig. 

Control Conf., 2018. 

[11] X. Mu, R. Huang, Q. Zou, and H. Hu, “Machine learning-based 

active flutter suppression for a flexible flying-wing aircraft,” J. 

Sound Vib., vol. 529, 2022. 

[12] V. Samaitis, B. Yilmaz, and E. Jasiuniene, “Adhesive bond quality 

classification using machine learning algorithms based on 

ultrasonic pulse-echo immersion data,” J. Sound Vib., vol. 546, 

2023. 

[13] V. Mnih et al., Playing Atari with Deep Reinforcement Learning. 

2013. 

[14] T. P. Lillicrap et al., Continuous control with deep reinforcement 

learning. 2015. 

[15] S. Fujimoto, H. van Hoof, and D. Meger, Addressing Function 

Approximation Error in Actor-Critic Methods. 2018. 

 

 
 


