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Abstract 

The natural frequencies of a cracked plate with a roving mass were computed using the Rayleigh-Ritz Method for various sets of boundary 
condition. The obtained frequencies exhibit a sudden shift as a roving body crosses a crack. If the crack is only partial and continuity of 
translation is maintained, then the frequency shift occurs only when the body possesses a rotary inertia. If the crack is a complete one (through 
thickness) which permits differential translation to occur on either side of the crack, a particle having mass only (translatory inertia) is 
sufficient to cause a sudden shift. There is no need for a rotary inertia. This is potentially useful in detecting cracks in structures, as it is 
possible to track the changes in the natural frequencies of a structure as a test body such as a vehicle on a bridge moves and identify points 
where sudden frequency changes occur. 
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1. Introduction 

Identifying cracks through frequency measurements has 

been a subject of research for decades [1-14], but it still 

remains a challenge due to two main reasons. The frequency 

changes due to cracks are usually very small and the inverse 

problem of identifying cracks is further complicated by the 

fact that the frequencies depend on both the number, severity 

and locations of cracks. However, recent work [15] shows 

that in a beam, a roving body that has a rotary inertia causes 

a sudden shift in frequencies as it passes a crack.  

In this paper, this phenomena is investigated for a plate 

with a roving body. Vibration analysis of plates with cracks 

also attract many researchers for decades [16-22]. We show 

that the frequencies of a plate with a crack will change 

abruptly as a mass attached to the plate is moved from one 

side of the crack to the other. This is potentially useful in 

detecting cracks in structures, as it is possible to track the 

changes in the natural frequencies of a structure as a test 

body such as a vehicle on a bridge, moves and identify points 

where sudden frequency changes occur. These would then 

correspond to potential crack locations irrespective of the 

number and severity of the cracks. To identify a crack and 

its location all that is needed is an observation of a sudden 

change in the natural frequencies. The location of the roving 

body then corresponds to a crack location. This sudden shift 

in frequency occurs in all modes with the exception of 

certain cases where the crack is at the nodal line and the use 

of a cumulative frequency shift parameter also helps to 

address the difficulty due to frequency changes being too 

small.  

2. Method 

The Rayleigh-Ritz Method is used to find the natural 

frequencies of rectangular plates with cracks and a roving 

body (Fig. 1). The type of crack considered here is that there 

is a discontinuity in flexural rotation but the translation is 

continuous such as those considered in beams [15]. The 

differential rotation is related to the bending moment at the 

crack and a rotational spring stiffness representing the 

effective stiffness of the joint. In plates, the crack can also 

go through the full thickness and in this case, both translation 

and rotation are discontinuous. 

The plate is also subject to a roving body, that is, a body 

whose location is changed to track any change in the 

frequencies but the body has no velocity relative to the plate. 

The Rayleigh-Ritz Method is then applied to calculate the 

natural frequencies of the plate and the results are then 

plotted against the location of the roving body. The crack is 
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introduced as follows: The plate is formed by assembling 

two rectangular plates and the coupling between the two 

plates is enforced through distributed penalty stiffness that 

control the relative translations and rotations between the 

two components. A length along which a crack is present is 

subject to zero or low penalty stiffness but elsewhere along 

the joint sufficiently high penalty stiffness is applied. To 

represent a complete (through thickness) crack both 

translational and rotational penalty stiffness are set to zero 

while for flexural cracks similar to those in beams, the 

translational stiffness is set to a high value but rotational 

stiffness is set to a smaller value. Suitable magnitude of 

penalty stiffness is determined by using positive and 

negative stiffness values [23] which help to ensure that any 

error due to violation of the continuity is kept within the 

required accuracy.  

The plate was subdivided into two rectangular segments 

(Segment 1 and 2) that have the separate coordinates (x1, y) 

and (x2, y), and for each segment the admissible functions in 

x, y directions consisted of a constant, a linear function, a 

quadratic function and a cosine series [24]. The out-plane 

displacement plate of a segment of a completely free plate, 

Wk (k = 1 or 2) can be defined by the following equations. 
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where ω is the circular frequency and t is time. Gi,j are 

undetermined weighting coefficients. The above equations 

are substituted into the strain energy expression, Vk and 

kinetic energy expression, Tk given by Eqs. (3) and (4) 

respectively. 
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Here, D is the plate rigidity, E is Young’s modulus, ν is 

Poisson’s ratio, ρ is the density of the material and h is the 

thickness of the plate.  

The two segments were joined together by translational 

and rotational springs. For the length of the crack the 

rotational stiffness was of low magnitude for partial flexural 

cracks but for full cracks the stiffness values were set to zero. 

Elsewhere very high stiffness values of the order 106 times 

that of the typical plate stiffness was used to enforce 

continuity. The strain energy due to the springs between the 

plate segments are given by Eqs. (5) and (6) 

( ) ( )( )
2

2 1 1
0

1
0, ,

2

b

t tV k W y W a y dy= −  (5) 

( ) ( )( )
2

' '

2 1 1
0

1
0, ,

2

b

r rV k W y W a y dy= −  (6) 

where kt and kr are translational and rotational spring 

constants of artificial springs attached between the two 

segments respectively. 

The translational and rotational kinetic energy of the 

roving mass are given by Eqs. (7) and (8) respectively. 
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By attaching translational and rotational springs along 

the plate edges, any typical set of boundary conditions can 

be incorporated with the penalty method [25]. The strain 

energy due to attached springs along the plate edges, Ve is 

given by Eq. (9). 
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Figure 1. A cracked plate with a roving body 
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where, a2 = a – a1, and Kt is translational spring constant and 

Kr is rotational spring constant of the attached spring on the 

edges.  

Equations (10) and (11) give the total strain and kinetic 

energy. 

1 2total t r eV V V V V V= + + + +  (10) 

1 2total t rT T T T T= + + +  

The stiffness matrix and mass matrix used in the 

Rayleigh – Ritz analysis are derived from the total strain and 

kinetic energy equations. 

3. Results and Discussion 

 The natural frequencies of a rectangular plate with a 

crack running parallel to one edge were computed using the 

Rayleigh-Ritz Method. The results were generated for 

various sets of boundary conditions with a partial flexural 

crack at a1=0.4a running the full width of the plate (Lc=b) 

for the non-zero natural frequency. When the mass is exactly 

at the location of the crack, (i.e. xm/a = 0.4) the natural 

frequencies were calculated for two cases, one is where the 

mass is on the edge of Segment 1 and the other is where it is 

on Segment 2. Roving body had a mass of 5% of the plate 

mass. For the rotary inertia a radius of gyration of 0.1a was 

used. 

A convergence study was carried out for a completely 

free square plate with a crack that located at a1 = 0.4a. Table 

1 shows frequency parameters against the order of 

polynomial in Eq. (2). It shows that the results for first three 

bending modes are converged in four significant figures by 

the order of polynomial of 10 × 10. 

Figure 2 shows the variation of a non-dimensional first 

frequency parameter Ω = ωa2(ρh/D)0.5 for a completely free 

square plate against the location (xm/a) of a roving body with 

(continuous line) and without (dotted line) rotary inertia, for 

ym = 0.3b. With the roving mass having rotary inertia, it can 

be seen that there is a sudden change in the frequency 

parameter when the roving mass passes the crack. 

Table 1. Convergence of frequency parameters for a completely free 

square plate with a crack (a1 = 0.4a) 

Mode 
Order of polynomial (i × j) 

5x5 6x6 7x7 8x8 9x9 10x10 

1 12.23 12.23 12.23 12.23 12.23 12.23 

2 13.50 13.44 13.44 13.43 13.43 13.43 

3 21.71 21.71 21.70 21.70 21.70 21.70 

 

 

(a) 

 
(b) 

Figure 2. The frequency parameter against the location of the roving mass 

for a completely free square plate (a) without rotary inertia, (b) with rotary 

inertia. 

Figures 3 and 4 show the first frequency parameter 

computed including the rotary inertia for simply supported 

and clamped square plates respectively. Those results were 

obtained using the penalty method with Eq. (9). It can also 

be seen that there is a sudden change in the frequency 

parameter when the roving mass passes the crack.  

 

Figure 3. The frequency parameter against the location of the roving mass 

for a simply supported square plate. 
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Figure 4. The frequency parameter against the location of the roving mass 

for a clamped square plate. 

For the case of the clamped plate (Fig. 4), there is no 

effect of the roving mass when it is on the plate edges, (i.e. 

xm/a = 0 and 1) since there is no translation and rotation on 

the clamped edge. However, this is not the case for 

completely free and simply supported plates. The effect of 

the roving mass when it is on the edges of these plates are 

observed in Figs. 2 and 3. 

Figure 5 shows the first frequency parameter for a 

cantilever plate where the crack is perpendicular to the 

clamped edge. An abrupt change in the frequency is 

observed however, the change is smaller than those of the 

simply supported and clamped plates. 

 

Figure 5. The frequency parameter against the location of the roving mass 

for a cantilever square plate. 

4. Conclusions 

The natural frequencies of a thin square plate under 

various boundary conditions with a crack parallel to an edge 

were computed using the Rayleigh-Ritz Method. The 

computed frequencies exhibit a sudden shift as a roving body 

crosses a crack. If the crack is only partial and continuity of 

translation is maintained, then the frequency shift occurs 

only when the body possesses a rotary inertia, as has been 

observed in beams. If the crack is a complete one (through 

thickness) which permits differential translation to occur on 

either side of the crack, a particle having mass only 

(translatory inertia) is sufficient to cause a sudden shift. 

There is no need for a rotary inertia. Future work would be 

to study the effect of cracks that are not parallel to an edge, 

and non-straight cracks. The body used in this study was 

assumed to possess mass and rotary inertia at a point. The 

effect of a body of small but finite dimensions also would be 

investigated. 
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