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Abstract 

A method is presented for determining the free vibration frequencies of doubly curved, isotropic shallow shells under general edge 

conditions and is used to obtain accurate natural frequencies for wide range of geometric parameters. Based on the shallow shell 

theory applicable to thin thickness shells, a method of Ritz is extended to derive a frequency equation wherein the displacement 

functions are modified to accommodate arbitrary sets of edge conditions for both in-plane and out-of-plane motions. In numerical 

computation, convergence is tested against series terms and comparison study is made with existing results by other authors. Twenty 

one sets of frequency parameters are tabulated for a wide range of shell shape and curvature ratio to serve as data for future 

comparison and practical design purpose.    
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1. Introduction 

Open shallow shell is one of practical shell shapes, 

and has been widely used as structural components in 

many mechanical, aeronautical, building and marine 

structures. These shallow shell components are often 

subjected to vibration environment and the vibration 

analysis of shallow shells constitutes important part of 

structural engineering.  

Development in the field of general shell vibration is 

summarized in a famous monograph [1] compiled by 

Leissa, and shallow shell vibration is a part of this 

monograph. The mechanics of shells is described in 

textbooks, for example in [2], and a handbook on shell 

vibration was published [3] in 2003. Use of shallow shell 

structure in automobiles was introduced [4] in connection 

with composite material.  

First notable work on this topic is one [5] by Leissa 

and Kadi that formulated the exact solution of shallow 

shells of rectangular planform supported along four edges 

by shear diaphrams. The shear diaphragm gives the edge 

condition similar to simple support in the flat plate theory, 

except that the in-plane displacement parallel to the edge 

is constrained but displacement perpendicular to the edge 

is free. For general boundary conditions other than the 

shear diaphragm, exact solution is not derivable. 

By using approximate methods, vibration of 

cantilevered cylindrical [6] and doubly curved [7] 

shallow shells were studied in the first half of 1980’s. 

Leissa and one of the present authors analyzed vibration 

of completely free [8] and corner point supported shallow 

shells [9]. In the 1990’s, research on this topic became 

more active. Effects of edge constraints on natural 

frequencies were studied [10], and one of these authors 

published a review paper on shallow shell vibration [11]. 

Yu and his co-workers presented free vibration analysis 

of circular cylindrical shells [12]. Liew and Lim 

published analysis of shallow shells of curvilinear 

planform [13], doubly curved shell [14], and use of so-

called pb-2 Ritz method on the topic [15]. They also 

presented a review paper on shallow shell vibration [16]. 

In the 2000’s, Qatu once again summarized on 

development on shallow shell vibration [17] to follow up 

his previous review [11]. Design problem was studied 

[18] for maximizing natural frequencies of laminated 

shallow shell where more complicated stress-strain 

relations are included. Monterrubio [19] introduced 

penalty parameters in the analysis of shallow shell 

vibration. Qatu studied effect of in-plane edge constraints 

on frequencies of simply supported doubly curved 

shallow shells [20]. 

 

Figure 1. Shallow shell of rectangular planform 
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More recently, Mochida et al. [21] and Qatu and 

Asadi [22] published lists of frequencies for general 

boundary conditions. Particularly in [21], they extended a 

method of superposition method to shallow shell 

vibration for the first time. In the authors’ opinion, their 

numerical results seem most accurate in the literature 

published this far, but are limited to the case of very thin 

shell (edge length/ thickness=100).  Considering the 

situations, it is obvious that thorough list of accurate 

frequency parameters should be tabulated for wide range 

of general edge conditions, which is the purpose of the 

present paper. 

2.  Analytical Method  

2.1. Ritz method for general boundary condition 

The quadratic mid-surface of a shallow shell (panel) 

may be expressed in a rectangular coordinate system as 

 

( )
2 21

2
2 x xy y

x xy y
x,y

R R R


 
= − + + 

 
 

  (1)  

where Rx and Ry are the radii of curvature in the x and y 

directions, respectively, and Rxy is the radius of twist but 

is not included in this study (i.e., 1/Rxy=0). For a doubly 

curved shell, the orientation of the x-y coordinates may 

be chosen so that Rx and Ry are principal constant 

curvature radius as shown in Fig.1. The dimension of its 

planform is given by a×b and the thickness is h. The four 

sides are subjected to uniform in-plane (i.e., stretching) 

and out-of-plane (bending) boundary conditions. This 

shell takes geometric form of a cylindrical shell for 

“1/Rx=(finite) and 1/Ry=0 (Ry=∞)” or “1/Ry=(finite) and 

1/Rx=0 (Rx=∞)”. Similarly, it takes form of a spherical 

shell for 1/Rx=1/Ry=(finite), and does form of a hyper 

paraboloidal shell for 1/Rx= -1/Ry=(finite) where positive 

curvature exists in x direction and negative curvature in y 

direction. 

    Using the Kirchhoff hypothesis, the displacements 

u*(x,y,z,t), v*(x,y,z,t) and w*(x,y,z,t) of an arbitrary point 

in a shell are written as 

 

* w
u u z

x


= −


, 

* w
v v z

y


= −


, 

*w w=   (2) 

where z is the coordinate measured from the mid-surface 

in the direction of outer normal.  The u(x,y,t) and v(x,y,t) 

are displacement components, tangent to the mid-surface 

and parallel to the xz and yz planes, respectively, and 

w(x,y,t) is a displacement component normal to the mid-

surface at a point on the mid-surface.   

In the linear theory, the strain components at an 

arbitrary point (x,y,z) are 
*
x x xz  = + , 

*
y y yz  = + , 

 

*
xy xy xyz  = +   (3) 

assuming that z is negligible in comparison with R , 

where the membrane strains are given by 
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   (4) 

and the curvature changes due to the vibratory 

displacements are 

 

2
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
, 

2
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y
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= −


,
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2xy
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  (5) 

For an isotropic shallow shell, the stress-strain 

equation is written as 
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  (6) 

where the coefficients are elastic constants 

   11 22 12 11 6621

E
Q Q , Q Q , Q G


= = = =

−
 (7) 

where E  is the moduli of elasticity, G=E/2(1+ν) is the 

shear modulus and ν is Poisson’s ratios. 

The force resultants and the moment resultants are 

obtained by integrating the stresses and the stresses 

multiplied by z, respectively, over the shell thickness h, 

and are written in matrix form as   

 

N A B

M B D




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where   N ,  M ,    and    are the vectors of 

force resultants, moment resultants, mid-surface strains 

and curvatures, respectively, given by 
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  (9a,b,c,d) 

and    A , B  and  D  are the matrices of stiffness 

coefficients defined by 

 

 
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The stiffness coefficients in Eqs. (10a,b,c) are values 

determined by 
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 ij ijA hQ=   , 0ijB =   (11a,b) 

 12
ij ij

h
D Q

 
=  
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 (11c) 

(i,j=1,2,6)  for specific case of shallow shells composed 

of isotropic material. For more complicated shells 

including laminated composite materials, Eqs. (11) take 

more complicated form as shown in Ref. [18]. 

In the present study, the free vibration problem can be 

solved by means of the Ritz method.  This requires the 

evaluation of energy functionals.  The strain energy 

stored in a shell during elastic deformation is written in 

the classical (thin) shallow shell theory by 

 s bs bV V V V= + +   (12) 

where sV , bsV  and bV  are the parts of the total strain 

energy due to stretching, bending- stretching coupling 

and bending, respectively: 
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The kinetic energy of the panel due to translational 

motion only is given by 
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(14) 

where   is the mass density of the shell per unit 

volume. 

For simplicity in the formulation, the following 

dimensionless quantities are introduced. 

2x

a
 = , 

2y

b
 =  (dimensionless coordinates)  (15a) 

2 h
a

D


 = (dimensionless frequency parameter) 

             (15b) 

 

( )

3

212 1
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D


=

−
 (reference plate stiffness)        (15c) 

In the Ritz method the displacements may be assumed 

in the form 

    ( ) ( ) ( )
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ij i j
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= =
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where ijP , klQ  and mnR are unknown coefficients and 

( )iX  , ( )jY  , .. and ( )nY   are the functions that 

satisfy at least the kinematical boundary conditions at the 

edges.  The upper limit in each of the summations (16) is 

arbitrary but is unified here for simplicity in the 

convergence test. 

   After substituting Eqs.(16) into the functional L  

max maxL T V= −                   (17) 

composed of the maximum strain and kinetic energies 

obtained from Eqs.(12) and (14), the stationary value is 

obtained by 

          0
ij
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
=


, 0

kl

L

Q


=


, 0

mn

L

R


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
   (18a,b,c) 

( ( ) ( )0 1 2 1 0 1 2 1i,k ,m , , ,.., M ; j,l,n , , ,..., N= − = − )  

The result of the minimization process (18) yields a 

set of homogeneous, linear simultaneous equations in the 

unknowns  ij kl mnP ,Q ,R .  For non-trivial solutions, the 

determinant of the coefficient matrix is set to zero.  The 

(M×N)×3 eigenvalues may be extracted and the lowest 

several eigenvalues (natural frequencies) are important 

from a practical viewpoint. 

The above procedure is a standard routine of the Ritz 

method, and is modified to incorporate arbitrary edge 

conditions. This approach introduces the following 

polynomials 

     ( ) ( ) ( )
1 3

1 1
Bu Bui

iX    = + −                    (19a) 

( ) ( ) ( )
2 4

1 1
Bu Buj

jY    = + −    (19b) 

     ( ) ( ) ( )
1 3

1 1
Bv Bvk

kX    = + −                   (19c)  

( ) ( ) ( )
2 4

1 1
Bv Bvl

lY    = + −        (19d) 

      ( ) ( ) ( )
1 3

1 1
Bw Bwm

mX    = + −                 (19e)  

( ) ( ) ( )
2 4

1 1
Bw Bwn

nY    = + −        (19f) 

where rsB  ( )1 2 3 4r u,v,w; s , , ,= =  is the boundary 

index [18] which is used to satisfy the kinematic 

boundary conditions. The capital letter B stands for 

Boundary. The first subscript letter in rsB  indicates 

which displacement (u,v or w) is dealt with and the 

second subscript number indicates which edge, Edge 

(1),.. or Edge (4), is under consideration. The Edge 

(1),(2),(3) and (4) denote the boundary along x=-a/2, y=-

b/2, x=a/2 and y=b/2, respectively (See Fig. 1).   
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For in-plane displacements u and v, rsB =0 (r=u, v; 

s=1,2,3,4) denote that the specified displacement along 

the specified edge is free and rsB =1 denote that the 

displacement is rigidly fixed. For out-of-plane 

displacement w, rsB =0, 1 and 2 (r=w; s=1,2,3,4) denote 

that the specified displacement along the specified edge 

is free, simply supported and clamped, respectively.  

With such boundary indices, one can accommodate 

arbitrary sets of both in-plane and out-of-plane boundary 

conditions in the vibration analysis and computation.   

The introduction of the boundary index makes it 

possible to deal with a tremendous number of edge 

conditions in the analysis.  The number of combinations 

in the boundary condition is (2×2×3)4 =20736, when one 

of the two conditions (free or fixed) in u and v and one of 

the three conditions (free, simply supported or clamped) 

in w are imposed along each of the four edges. This is 

significantly larger than the plate analysis where only 

out-of-plane displacement is concerned.  The present 

vibration analysis can calculate natural frequencies for 

any of these combinations.  

In the following numerical examples, however, the 

boundary conditions are limited to those similar to the 

standard plate boundary conditions, such as free edge, 

simply supported edge and clamped edge.  For example, 

at the Edge (1) along x= -a/2 

     Bu1= Bv1= Bw1=0 for the free edge (no constraint),  

denoted by F                                                   (20a) 

     Bu1=0, Bv1=1, Bw1=1 for the simply supported edge  

denoted by S                                                  (20b) 

      Bu1= Bv1=1, Bw1=2 for the clamped edge   

denoted by C                                                 (20c) 

The entire set of boundary conditions is denoted by 

four capital letter, such as CSFF, in the counterclockwise 

starting from Edge(1). 

2.2. Exact solution for specific boundary condition 

When a shallow shell of rectangular planform is 

supported along four edges by shear diaphragms, the 

exact solution is possible [1][3][5] by assuming  

( ) ij

i x j y
u x,y,t P cos sin sin t

a b

 
=         (21a) 

( ) kl

k x l y
v x,y,t Q sin cos sin t

a b

 
=        (21b) 

( ) mn

m x n y
w x,y,t R sin sin sin t

a b

 
=     (21c) 

Equations (21) are substituted in the governing equation, 

and the exact solution is obtained in the form of 3×3 

frequency matrix. This solution procedure is given in 

detail in Refs. [3][5]. 

 

3. Numerical Examples and Accuracy of Solution 

3.1. Convergence and comparison of the solution 

In numerical examples, square planform (a/b=1) and 

moderately thin thickness (a/h=20) are used. Poisson’s 

ratio is kept asν=0.3.  

Table 1 presents convergence study of frequency 

parameters of spherical (Rx/Ry=1), cylindrical (Rx/Ry=0) 

and hyperbolic paraboloidal (Rx/Ry= -1) shells of square 

planform. These shells (SSSS) are supported by shear 

diaphram along four edges. For each shell configuration, 

two degrees of curvature a/Rx=0.2 and 0.5 are used. The 

present results are calculated for the number of terms 8×8, 

10×10 and 12×12 for each of u, v and w that yield 

frequency matrix size of 192×192, 300×300 and 432×432, 

respectively.  

The present parameters converge well within five 

significant figures, and show exact match with the exact 

results obtained from Eq. (21). They are also compared to 

the parameters in Ref. [22], and are generally in good 

agreement with slight differences. In the following tables, 

the present results are calculated by using the 12×12 

solution and presented in five significant figures. 

Ω1 Ω2 Ω3 Ω4 Ω5 Ω6

Spherical shell (Rx/Ry=1, a/Rx=0.2)

8×8 23.715 51.052 51.052 80.021 99.563 99.563

10×10 23.715 51.052 51.052 80.021 99.543 99.543

12×12 23.715 51.052 51.052 80.021 99.542 99.542

Exact 23.715 51.052 51.052 80.021 99.542 99.542

Ref.[22] 23.70 51.04 51.04 80.02 ━ ━

Spherical shell (Rx/Ry=1, a/Rx=0.5)

8×8 38.080 59.134 59.134 85.361 103.88 103.88

10×10 38.080 59.134 59.134 85.361 103.85 103.85

12×12 38.080 59.134 59.134 85.361 103.85 103.85

Exact 38.080 59.134 59.134 85.361 103.85 103.85

Ref.[22] 38.01 59.10 59.10 85.32 ━ ━

Cylindrical shell (Rx/Ry=0, a/Rx=0.2)

8×8 20.786 49.391 50.451 79.203 98.700 99.420

10×10 20.786 49.391 50.451 79.203 98.680 99.400

12×12 20.786 49.391 50.451 79.203 98.680 99.400

Exact 20.786 49.391 50.451 79.203 98.680 99.400

Ref.[22] 20.78 49.39 50.44 79.19 ━ ━

Cylindrical shell (Rx/Ry=0, a/Rx=0.5)

8×8 25.509 49.613 55.861 80.479 98.616 103.03

10×10 25.509 49.613 55.861 80.479 98.616 103.03

12×12 25.509 49.612 55.861 80.479 98.593 103.01

Exact 25.509 49.612 55.861 80.479 98.594 103.01

Ref.[22] 25.48 49.61 55.84 80.46 ━ ━

Hyperbolic paraboloidal shell (Rx/Ry=-1, a/Rx=0.2)

8×8 19.659 49.924 49.924 78.873 99.244 99.244

10×10 19.659 49.924 49.924 78.873 99.224 99.224

12×12 19.659 49.924 49.924 78.873 99.224 99.224

Exact 19.659 49.924 49.924 78.873 99.224 99.224

Ref.[22] 19.66 49.92 49.92 78.85 ━ ━

Hyperbolic paraboloidal shell (Rx/Ry=-1, a/Rx=0.5)

8×8 19.252 52.806 52.806 78.438 101.96 101.96

10×10 19.252 52.805 52.805 78.438 101.94 101.94

12×12 19.252 52.805 52.805 78.438 101.94 101.94

Exact 19.252 52.805 52.805 78.438 101.94 101.94

Ref.[22] 19.25 52.79 52.79 78.46 ━ ━

Table 1 Convergence and comparison of frequency parameters Ω

of simply supported shallow shells (SSSS), a/b =1, a/h =20, ν=0.3.
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Table 2 is another comparison study with values of 

Ref. [21] by Mochida and his co-workers. Note that only 

in Table 2, the thickness ratio is kept as a/h=100 (very 

thin) due to the need for comparison, while in all other 

tables, the ratio is a/h=20 (moderately thin) throughout. 

They [21] extended the method of superposition, 

commonly used in plate vibration analysis, to shallow 

shell vibration analysis. Three sets of boundary condition 

CCSS, CSCC and CCCC are considered. When the 

present values are rounded with four significant figures, 

most of the results are exactly identical with the referred 

values [21] for wide ranges of boundary conditions, shell 

configuration and degree of curvature. Thus, the accuracy 

of the present solution is well demonstrated  

 3.2. Comprehensive results of shallow shells 

Table 3(a) presents the lowest six frequency 

parameters Ω of shallow spherical shells (Rx/Ry=1) of 

square planform (a/b=1) with moderate thickness 

(a/h=20) for 21 different sets of boundary conditions. 

The degree of curvature is taken as a/R=0.2. Table 3(b) is 

the same format as Table 3(a) except that the curvature is 

larger in a/R=0.5.  

 
 

 
 

B.C.  Ω1  Ω2  Ω3  Ω4  Ω5  Ω6

FFFF 13.460 19.563 25.991 34.838 34.838 61.770

SFFF 6.6294 15.343 25.400 27.084 49.196 51.604

CFFF 3.7518 8.4865 21.518 28.262 30.515 44.098

SSFF 3.3668 17.321 20.788 39.706 51.532 54.319

CSFF 5.5638 19.350 25.461 44.633 53.198 54.137

CCFF 7.8923 23.895 27.922 49.256 62.962 66.231

SFSF 10.066 16.105 38.895 39.592 46.867 71.588

CFSF 15.629 21.677 41.802 49.902 56.556 78.415

SSSF 12.221 30.508 41.852 60.149 63.216 64.384

CSSF 17.921 33.738 51.986 65.351 68.576 101.91

CCSF 18.464 38.646 52.338 72.133 75.507 106.00

CFCF 25.385 28.722 45.607 61.561 67.417 80.888

SCSF 12.951 35.762 42.269 64.111 64.384 73.590

CSCF 26.453 38.140 63.338 68.064 78.336 109.64

CCCF 26.907 42.737 63.637 77.905 81.563 117.42

SSSS 23.715 51.052 51.052 80.021 99.542 99.542

CSSS 27.338 53.342 60.177 87.149 101.11 113.97

CCSS 30.659 62.026 62.352 93.819 115.29 115.45

CSCS 32.577 56.377 70.634 95.546 103.05 128.77

CCCS 35.610 64.875 72.385 101.74 117.10 131.04

CCCC 40.422 74.713 74.713 109.14 132.24 133.06

Table 3(a) Frequency parameters Ω of shallow spherical shells,

R x/R y=1, a/R x=a/R y=0.2, a/b =1, a/h =20, ν=0.3.

B.C.  Ω1  Ω2  Ω3  Ω4  Ω5  Ω6

FFFF 13.414 19.392 32.522 34.952 34.952 64.993

SFFF 6.5501 16.251 25.460 31.034 52.846 57.290

CFFF 4.7227 8.3836 22.089 28.777 32.298 46.445

SSFF 3.3328 17.287 24.642 48.041 53.468 58.038

CSFF 6.3859 19.708 27.976 52.485 54.138 56.256

CCFF 11.139 23.818 32.726 57.426 63.892 69.438

SFSF 11.118 15.910 42.201 47.454 48.857 76.185

CFSF 17.086 26.233 50.914 52.202 57.953 83.723

SSSF 13.137 42.426 44.253 64.383 66.009 69.874

CSSF 21.832 45.242 54.358 71.892 74.084 105.86

CCSF 22.097 50.022 54.536 77.648 81.379 107.00

CFCF 37.260 38.449 55.161 63.247 68.605 86.273

SCSF 13.672 44.410 47.411 64.384 69.935 79.514

CSCF 37.802 49.827 65.270 74.501 83.417 113.60

CCCF 37.993 55.089 65.419 83.845 86.719 121.32

SSSS 38.080 59.134 59.134 85.361 103.85 103.85

CSSS 41.361 61.292 67.571 92.265 105.39 117.76

CCSS 44.688 69.242 69.928 98.789 119.07 119.22

CSCS 46.965 64.210 77.040 100.41 107.29 128.77

CCCS 50.623 72.403 78.805 106.52 120.86 134.53

CCCC 58.167 81.187 81.187 113.82 135.61 137.50

Table3(b) Frequency parameters Ω of shallow spherical shells,

R x/R y=1, a/R x=a/R y=0.5, a/b =1, a/h =20, ν=0.3.

Ω1 Ω2 Ω3 Ω4 Ω5 Ω6

CCSS

Spherical shell (Rx/Ry=1)

Present 171.60 180.27 186.99 195.32 204.04 210.09

Ref.[21] 171.6 180.3 187.0 195.3 204.1 210.1

Cylindrical shell (Rx/Ry=0)

Present 72.375 105.48 127.24 133.02 147.49 168.62

Ref.[21] 72.37 105.5 127.2 133.0 147.5 168.6

Hyperbolic paraboloidal shell (Rx/Ry=-1)

Present 94.181 122.38 136.98 149.24 173.01 173.62

Ref.[21] 94.18 122.4 137.0 149.2 173.0 173.6

CSCC

Spherical shell (Rx/Ry=1)

Present 179.90 187.88 192.50 202.47 208.02 228.73

Ref.[21] 179.9 187.9 192.5 202.5 208.0 228.7

Cylindrical shell (Rx/Ry=0)

Present 95.798 116.43 145.24 150.67 170.30 187.31

Ref.[21] 95.81 116.4 145.2 150.6 170.3 187.3

Hyperbolic paraboloidal shell (Rx/Ry=-1)

Present 131.20 139.90 154.35 158.42 186.02 189.83

Ref.[21] 131.2 139.9 154.4 158.4 186.0 189.8

CCCC

Spherical shell (Rx/Ry=1)

Present 191.99 191.99 196.93 209.96 216.19 242.22

Ref.[21] 192.0 192.0 169.9 210.0 216.2 242.2

Cylindrical shell (Rx/Ry=0)

Present 99.263 119.00 151.13 156.35 172.52 192.43

Ref.[21] 99.26 119.0 151.1 156.3 172.5 192.4

Hyperbolic paraboloidal shell (Rx/Ry=-1)

Present 157.35 157.35 157.41 166.52 204.03 208.69

Ref.[21] 157.3 157.3 157.4 166.5 204.0 208.7

Table 2 Comparison of frequency parameters Ω of shallow shells,

a/Rx =0.5, a/b =1, a/h =100, ν=0.3.
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Addition of curvature causes frequencies to be 

increased. In Table 3(a), the average increase from flat 

plates for the fundamental frequencies in Ω1 is 9 percent, 

including the highest increase 20 percent of SSSS shell. 

The deeper curvature a/R=0.5 in Table 3(b) shows the 

average increase of 39 percent in Ω1 with the maximum 

93 percent of SSSS shell.  

Table 4(a) and (b) list up the lowest six frequency 

parameters of shallow cylindrical shells with 

Rx=(infinity) and a/Ry=0.2 and a/Ry=0.5, respectively. 

This represents straight edges of the shell along the x axis, 

and curvature is given only in y direction. When the 

increase of the fundamental frequencies due to the 

curvature increase is considered, the average percent 

increases are 4 percent and 20 percent in Table 4(a) and 

(b), respectively. Roughly speaking, this effect is a half 

of the spherical shells, and the effect of curvature 

increase in one direction is a half of curvatures in two 

directions of spherical shells. 

 Tables 5(a) and (b) also tabulate the lowest six 

frequency parameters of shallow cylindrical shells, but 

with Ry=(infinity) and a/Rx=0.2 and a/Rx=0.5, 

respectively. Straight edges of the shell exist along the y 

axis, and curvature is only in x direction. For cylindrical 

shells with FFFF, SSSS and CCCC, the results are the 

identical as in  Table 4(a) and (b) due to uniform 

boundary condition along four edges, and also shells with 

SSFF, CCFF and CCSS give the identical results as in 

Table 4(a) and (b) since the 90 degree rotation (or 

flipping about a diagonal symmetric axis) of the shell 

gives essentially the same boundary conditions.  

B.C.  Ω1  Ω2  Ω3  Ω4  Ω5  Ω6

FFFF 13.463 20.120 24.765 34.783 34.906 61.080

SFFF 6.6433 15.762 25.444 26.011 48.826 51.057

CFFF 3.8031 8.520 21.967 27.283 31.040 43.507

SSFF 3.3642 17.606 19.790 38.566 51.306 53.876

CSFF 5.6203 19.155 25.344 43.415 52.701 54.069

CCFF 7.2165 24.291 27.072 48.195 62.925 65.837

SFSF 10.293 16.180 36.802 39.703 46.889 70.965

CFSF 15.820 20.652 39.843 50.076 56.427 77.325

SSSF 12.306 28.033 41.887 59.537 61.866 64.383

CSSF 17.374 31.420 51.973 64.044 67.958 101.23

CCSF 18.147 36.578 52.369 71.598 74.409 106.18

CFCF 22.728 26.490 43.729 61.700 67.313 79.829

SCSF 13.345 33.608 42.359 63.602 64.383 72.471

CSCF 23.879 35.887 63.362 66.802 77.744 108.98

CCCF 24.466 40.558 63.695 76.806 81.039 116.81

SSSS 20.786 49.391 50.451 79.203 98.680 99.400

CSSS 24.612 51.746 59.574 86.374 100.26 113.84

CCSS 28.366 60.815 61.677 93.135 114.62 115.26

CSCS 29.790 54.843 70.118 94.807 102.22 128.77

CCCS 32.959 63.515 71.936 101.07 116.37 130.89

CCCC 37.829 73.541 74.364 108.53 131.81 132.63

Table 4(a) Frequency parameters Ω of shallow cylindrical shells,

R x=(infinity), a/R y=0.2, a/b =1, a/h =20, ν=0.3.

B.C.  Ω1  Ω2  Ω3  Ω4  Ω5  Ω6

FFFF 13.439 21.283 28.119 34.685 35.450 61.010

SFFF 6.6395 19.427 25.800 26.100 49.939 54.147

CFFF 5.1616 8.5893 24.644 28.095 31.467 43.520

SSFF 3.3471 17.926 22.680 40.568 51.774 56.461

CSFF 6.7779 19.523 28.273 45.235 52.659 54.228

CCFF 8.4374 25.562 29.549 51.099 63.347 67.845

SFSF 13.103 16.415 37.219 43.261 47.666 72.235

CFSF 18.606 21.000 40.435 53.085 57.183 77.330

SSSF 14.789 29.570 44.943 61.893 62.205 64.383

CSSF 19.768 33.149 54.601 64.160 70.320 101.83

CCSF 20.504 39.505 54.881 74.396 74.918 108.09

CFCF 25.302 26.920 44.474 64.255 68.018 79.895

SCSF 15.790 36.420 45.243 64.384 66.824 72.867

CSCF 26.034 37.687 65.624 67.010 79.819 109.57

CCCF 26.625 43.567 65.872 77.322 83.608 117.65

SSSS 25.509 49.612 55.861 80.479 98.593 103.01

CSSS 29.072 52.119 64.209 87.612 100.21 116.97

CCSS 34.217 61.768 66.606 94.692 114.64 118.46

CSCS 33.797 55.363 74.117 95.957 102.21 128.77

CCCS 38.182 64.505 76.253 102.52 116.41 133.67

CCCC 46.241 74.300 79.239 110.14 132.35 135.51

Table 4(b) Frequency parameters Ω of shallow cylindrical shells,

R x=(infinity), a/R y=0.5, a/b =1, a/h =20, ν=0.3.

B.C. Ω1 Ω2 Ω3 Ω4 Ω5 Ω6

FFFF 13.463 20.120 24.765 34.783 34.906 61.080

SFFF 6.6292 14.925 25.340 26.889 48.649 50.799

CFFF 3.4675 8.4672 21.301 27.977 30.489 44.084

SSFF 3.3642 17.606 19.790 38.566 51.306 53.876

CSFF 5.3411 19.816 24.606 43.658 53.213 54.191

CCFF 7.2160 24.291 27.072 48.195 62.925 65.837

SFSF 9.6216 16.062 38.095 38.927 46.707 70.902

CFSF 15.125 21.586 41.173 49.350 56.387 78.225

SSSF 11.656 29.019 41.175 59.160 62.868 64.384

CSSF 17.291 32.612 51.402 65.052 67.756 101.44

CCSF 18.233 37.348 51.833 71.290 75.213 105.65

CFCF 24.782 28.631 45.173 61.099 67.253 80.746

SCSF 13.046 34.169 41.694 63.122 64.384 73.255

CSCF 25.874 37.417 62.847 67.846 77.615 109.24

CCCF 26.364 41.684 63.207 77.660 80.811 117.00

SSSS 20.786 49.391 50.451 79.203 98.680 99.400

CSSS 25.089 52.840 58.803 86.447 100.98 113.22

CCSS 28.366 60.815 61.677 93.135 114.62 115.26

CSCS 31.159 56.022 69.447 94.935 102.95 128.77

CCCS 33.866 64.448 71.213 101.12 117.01 130.41

CCCC 37.829 73.541 74.364 108.53 131.81 132.63

Table 5(a) Frequency parameters Ω of shallow cylindrical shells,

R y=(infinity), a/R x=0.2, a/b =1, a/h =20, ν=0.3.
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Their identical results of six cases are underlined. As 

expected, the increase of the fundamental frequencies 

due to the curvature increase is basically same as in 

Table 4(a) and (b).  

Finally, Table 6(a) and (b) list up the lowest six 

parameters of shallow hyperbolic paraboloidal shells 

with a/Ry=0.2 and a/Ry=0.5, respectively. The negative 

curvature ratio (Rx/Ry= -1) indicates that the shell 

geometry is convex in one direction and concave in 

another direction. This geometric feature gives rise 

unusual response in frequency. For shells of spherical 

and cylindrical curvature, addition of curvature causes 

more stiffness in the structure, and it results in the 

increase of natural frequencies. But for shell of 

hyperbolic paraboloidal shell, addition of negative 

curvature causes the decrease of frequencies, when shell 

has free edges. For example, the SFFF shell gives Ω

1=6.648 for a/Rx=0 (plate), Ω1=6.628 for a/Rx=0.2 and 

Ω1=6.548 for a/Rx=0.5. As the constrained is increased 

along the edges, this tendency disappears. 

 

 4. Conclusions 

The purpose of this paper was to present lists of 

accurate natural frequencies for free vibration of doubly 

curved, isotropic shallow shells of rectangular (square) 

planform under different sets of boundary conditions. For 

this purpose, mathematical procedure was described and 

accuracy of the present numerical solutions was well 

established by convergence and comparison studies. 

Thus, with strong background in solution accuracy, all 

the present frequency parameters were given in five 

B.C. Ω1 Ω2 Ω3 Ω4 Ω5 Ω6

FFFF 13.439 21.284 28.119 34.685 35.450 61.010

SFFF 6.5537 14.962 25.159 30.710 49.135 52.689

CFFF 3.4369 8.2686 21.129 28.647 31.417 46.386

SSFF 3.3474 17.927 22.681 40.569 51.774 56.461

CSFF 5.2853 22.217 24.740 46.690 53.805 56.634

CCFF 8.4374 25.562 29.549 51.099 63.347 67.845

SFSF 9.5542 15.696 38.833 44.561 46.547 71.739

CFSF 14.777 25.870 47.889 48.900 57.008 80.148

SSSF 11.506 34.831 41.059 59.650 64.384 67.893

CSSF 19.550 39.366 51.429 68.895 70.218 103.10

CCSF 21.313 43.499 51.948 72.439 79.696 105.04

CFCF 35.338 38.115 52.645 60.699 67.650 85.438

SCSF 14.725 39.385 41.653 63.678 64.384 77.594

CSCF 36.143 45.846 62.698 73.258 78.852 111.13

CCCF 36.473 49.547 63.134 82.043 82.448 118.79

SSSS 25.509 49.612 55.861 80.479 98.594 103.01

CSSS 31.345 58.522 59.672 88.079 104.65 113.21

CCSS 34.217 61.768 66.606 94.692 114.64 118.46

CSCS 40.744 62.278 70.066 96.739 106.73 128.77

CCCS 42.928 69.997 71.914 102.84 120.35 130.73

CCCC 46.241 74.300 79.239 110.14 132.35 135.51

Table 5(b) Frequency parameters Ω of shallow cylindrical shells,

R y=(infinity), a/R x=0.5, a/b =1, a/h =20, ν=0.3.

B.C.  Ω1  Ω2  Ω3  Ω4  Ω5  Ω6

FFFF 13.458 21.894 24.244 34.929 34.929 61.775

SFFF 6.6281 16.057 25.414 26.762 48.931 50.889

CFFF 3.8095 8.4752 22.356 27.892 30.617 44.083

SSFF 3.3591 18.781 19.323 38.159 51.803 54.022

CSFF 5.6190 20.369 25.086 43.345 53.237 54.290

CCFF 7.0680 25.562 27.018 48.207 63.436 65.918

SFSF 10.406 16.107 37.451 39.768 46.847 70.668

CFSF 15.839 21.623 40.753 50.048 56.513 78.037

SSSF 12.206 28.062 41.865 59.114 62.527 64.384

CSSF 17.735 32.074 51.964 64.796 67.770 101.19

CCSF 19.183 37.091 52.437 71.488 75.079 106.08

CFCF 25.159 28.691 44.999 61.683 67.361 80.627

SCSF 14.387 33.591 42.424 63.306 64.384 73.063

CSCF 26.181 37.301 63.325 67.705 77.629 109.05

CCCF 26.786 41.703 63.724 77.602 80.988 116.90

SSSS 19.659 49.924 49.924 78.873 99.224 99.224

CSSS 24.592 52.471 59.269 86.220 100.84 113.69

CCSS 28.542 61.369 61.547 93.043 115.07 115.19

CSCS 31.282 55.859 69.836 94.764 102.86 128.77

CCCS 34.232 64.379 71.753 101.07 116.93 130.85

CCCC 38.732 74.301 74.301 108.54 132.15 132.74

Table 6(a) Frequency parameters Ω of shallow hyperbolic para-

boloidal shells, R x/R y=-1, a/R y=0.2, a/b =1, a/h =20, ν=0.3.

B.C.  Ω1  Ω2  Ω3  Ω4  Ω5  Ω6

FFFF 13.406 24.102 31.229 35.444 35.444 63.315

SFFF 6.5483 19.020 25.562 31.448 49.885 54.027

CFFF 4.8347 8.3111 25.101 29.276 32.576 46.547

SSFF 3.3096 19.414 24.886 37.875 55.594 56.620

CSFF 6.3397 24.220 28.365 44.741 54.552 56.821

CCFF 7.5551 28.612 32.675 51.171 67.028 67.642

SFSF 12.909 15.945 41.288 43.783 47.396 70.296

CFSF 18.435 26.084 45.659 53.025 57.756 79.27

SSSF 14.054 29.794 45.098 59.410 64.383 65.895

CSSF 21.710 36.488 54.729 68.581 69.133 101.62

CCSF 25.820 41.998 55.400 73.706 78.889 107.56

CFCF 36.944 38.401 51.656 64.224 68.305 84.713

SCSF 20.858 36.118 45.769 64.383 64.882 76.477

CSCF 37.483 45.199 65.551 72.410 78.955 110.01

CCCF 38.249 49.610 66.142 82.098 83.171 118.21

SSSS 19.252 52.805 52.805 78.438 101.94 101.94

CSSS 28.811 56.335 62.406 86.712 103.76 116.05

CCSS 35.016 65.275 65.497 94.178 117.69 117.73

CSCS 41.267 61.320 72.397 95.686 106.13 128.77

CCCS 44.601 69.579 75.114 102.50 119.86 133.46

CCCC 50.691 78.836 78.836 110.19 135.10 135.53

Table 6(b) Frequency parameters Ω of shallow hyperbolic para-

boloidal shells, R x/R y=-1, a/R y=0.5, a/b =1, a/h =20, ν=0.3.
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significant figures, while other previous literature provide 

four significant figures.  

It is hoped that the present comprehensive sets of 

frequency parameters will serve as good reference for 

future comparison.  Due to the space limitation, the 

present results were given only for the case of relatively 

thick case (a/h=0.05) to complement Ref. [22]. In the 

next study, computation of frequency parameters will be 

done for very thin case (a/h=0.01) to match with Ref. 

[21], and the effect of the shell thickness will be clarified. 
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