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Abstract 

This paper deals with the optimization problem to maximize the vibration performance of laminated composite plates by properly tailoring 

the fiber orientation angles in the layers. The optimization is performed by using two metaheuristic methods, Genetic Algorithm (GA) and 

Particle Swarm Optimization (PSO), and comparison is made to evaluate differences in search performance of the two methods. Test 

problems are set for the evaluation of maximizing the fundamental frequencies, and some parameters are properly tuned for efficient solution 

search. From the numerical experiments, it turned out that the search using PSO indicates faster convergence and better solutions than GA 

scheme under assumption of search domain in real number.   
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1. Introduction 

Thin structural elements made of long-fiber reinforced 

composite material are used widely in aerospace, 

automotive, marine and civil engineering applications 

because they may be designed to be economic in the long 

run due to having low mass and achieving high stiffness and 

strength. For such a wide range of applications, various 

structural models such as the analytical or numerical finite 

element (FE) models may be combined with optimization 

procedures to achieve the best design. 

In the engineering optimization, there are a variety of 

optimization techniques, ranging from mathematical 

programming approaches [1] to metaheuristic approaches 

[2]. A class of the mathematical programming includes well-

accepted gradient-based methods, simplex algorithm for 

linear programming (LP), quadratic programming, dynamic 

programming, branch/bound method and etc. In the past few 

decades, however, the metaheuristic methods are more often 

used, such as Genetic Algorithm (GA) originally proposed 

by Holland [3] in 1975. Then GA was first applied to 

structural design in the late 1980’s by Goldberg [4]. More 

recently, other types of nature-inspired methods have been 

developed, and one of the promising ones is Particle Swarm 

Optimization (PSO) [5-7]. 

The reason for increasing use of metaheuristics is mostly 

due to the advantages that they are simple to code and use 

and can provide optimum or nearly optimum solutions 

without falling into local solutions. The drawback is the long 

computation time, but the recent development of 

computational technology compensates the situation.  

In this paper, stacking sequence problem is under 

consideration, where the objective function, in this case 

fundamental frequency, is maximized by searching the 

optimum fiber orientation angles in all the layers of 

symmetrically laminated rectangular plates. From 

metaheuristics, two representative methods are chosen, 

namely, Genetic Algorithm (GA) and Particle Swarm 

Optimization (PSO), and comparisons are made to evaluate 

the difference in search performance between the two 

methods. The bench mark problem is given for the 

evaluation of maximizing the fundamental frequencies, and 

the design of experiments (DoE) is used to make some 

search parameters being properly tuned. In the numerical 

experiments, it found out that the search by using PSO has 

shown the faster converged solutions than GA solution. 
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2. Metaheuristics and overview 

2.1. Basic concept of GA 

Genetic algorithm (GA) is one of metaheuristics that are 

generally inspired by the process of natural selection in 

nature. It is within the larger class of evolutionary algorithms 

(EA). GA is usually used to generate nearly optimum 

solutions to the engineering search problem by the help of 

bio-inspired operators such as selection, crossover and 

mutation [4], and it became popular optimization approach 

in the past few decades. After the first works by Holland in 

the 1970s, he authored a book [3], and he and his co-workers 

have established a basic framework in GA. 

In GA, a population of individuals is improved toward 

better solutions, where each individual is given a set of 

properties (genotype) to be changed and/or mutated. It is a 

usual practice to represent it in binary strings of 0 and 1. The 

process for improvement starts from with the first generation 

whose members (individuals) are randomly generated. The 

values of fitness in all individuals are evaluated and are 

taken usually from the value of the objective function in the 

optimization. The individuals with higher fitness are 

selected stochastically by, for example, a roulette rule.  A 

new generation of candidate solutions is adapted in the 

iteration. The iterative process is terminated based on 

prescribed condition, in such ways as a maximum number of 

generations is produced or a satisfactory fitness level is 

reached in the population. 

   The essence of GA consists in repetitive application of the 

selection of parents for mating and applying crossover and 

mutation. Particularly, the crossover and mutation are 

known as the most important genetic operators, and their 

probabilities are GA parameters needed to be tuned, called 

as the mutation probability and crossover probability. The 

population size for reasonable settings that depend on the 

problem being worked on.  

2.2. Basic concept of PSO 

As GA is a method inspired by principle observed in 

nature, a particle swarm optimization (PSO) is also one of 

metaheuristics and belongs to a class of evolutionary 

algorithm [4]. The advantages of PSO include no 

requirement for the gradient information in the problem and 

capability of searching a large space of feasible solutions. 

Just like GA, PSO is a numerical method to optimize in 

iterative process by improving individual solutions with 

respect to a given measure of quality. So, it requires a 

population of candidate solutions to be moved in the search-

space, but there is no notion like cross-over, mutation and 

mating of parents and that generation changes from parents 

to children.   

The iteration process is repeated by simple mathematical 

formula by using the particle's position and velocity vectors. 

A new position is decided by adding three vectors, an inertia 

vector of a particle (difference of the present and past 

position vectors), a vector heading to the best position of an 

individual particle, and a vector heading to the global best 

among the population. Coefficients are multiplied to each 

vector and tuned as input parameters. 

PSO was first originated by Kennedy, Eberhart and Shi 

[6] and was designed to simulated social behaviors of the 

movement in a flock of birds and school of fish. Kennedy 

and Eberhart published a book [7] to describe many 

theoretical aspects in PSO and swarm intelligence. 

Extensive surveys of PSO applications were made by Poli 

[8, 9]. Recently, a comprehensive review on theoretical and 

experimental works on PSO was published by Bonyadi and 

Michalewicz [10]. 

To summarize, algorithm of PSO is to have a swarm 

(population) of particles (feasible solutions) and the particles 

are moved following the formula in the search-space 

according to a few simple formulae. When improved 

positions are being discovered, these will then come to guide 

the next movements of the swarm. The process is repeated 

until a satisfactory solution will eventually be discovered, 

although the convergence is not guaranteed in strict 

mathematical sense.  

2.3. Overview of literature on plate stacking optimization 

For optimization of mechanical behaviors in laminated 

composite plates, the pioneering studies of Bert [11, 12], in 

which the fiber-orientation angles (design variables) that 

maximize the fundamental frequency (objective function) of 

laminated plates were sought. Since these early studies, a 

variety of approaches have been used to identify the lay-ups 

that maximize the frequencies and buckling loads of 

laminated plates. In the early days, metaheuristic methods 

and supporting computational environment were not 

available, lamination parameters coupled with mathematical 

programming were used by Fukunaga and others [13].  Zhao 

and Narita [14] used the complex method (extension of 

simplex method) for the problem. Todoroki and Haftka [15] 

used GA with repair strategy. The progress of design and 

optimization on composites was summarized in a textbook 

[16] in 1999.  

In the years of 2000’s, GA and metaheuristic approaches 

have evolved, and Todoroki and his co-workers have 

published some papers [17-19]. Narita has also presented a 

number of related papers [20-22] by developing a layerwise 

optimization method, where the physics-oriented behaviors 

are utilized in the solution process.  

More recently in the 2010’s, significant progress has been 

observed by using GA and PSO, or even GA-PSO combined 

method, to solve the stacking sequence problem. Le-Manh 

and Lee [23] dealt with stacking sequence optimization for 

the maximum strength of laminated composite plates using 

GA. Ehsani and Rezaeepazhand [24] solved the same 

optimization of laminated composite grid plates for 

maximum buckling load using GA. Ho-Huu and others [25] 

optimized laminated composite plates for maximizing 

buckling load using improved differential evolution. 
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Schaedler and Almeida [26] optimized maximum buckling 

load by harmony search algorithm. In 2017, Herath and 

others [27] used GA to optimized structural strength and 

laminate optimization of self-twisting composite hydrofoils.  

Vosoughi and co-workers [28, 29] presented a mixed finite 

element and improved GA for maximizing buckling load of 

stiffened laminated composite plates. These authors also 

made academic efforts to combine different ideas and 

presented maximized buckling load by using FE-GAs-PSO, 

a combined approach.  

For comparison of GA and PSO, Zhou and others 

conducted a comparative study of improved GA and PSO in 

solving multiple traveling salesmen problem [30]. 

Modification from a simple GA was made by Pathan and 

others [31] by GA for optimizing the damping response of 

composite laminates. Javidrad and his colleagues [32] 

combined PSO with a simulated annealing (SA), and named 

as a hybrid PSO-SA method. Akmar and others [33] 

summarized recent progress in probabilistic multi-scale 

optimization of hybrid laminated composites. As 

overviewed on the applications of GA, PSO and heuristic 

methods above, a large number of studies are made on 

applications of GA and PSO to the staking sequence problem 

of laminated composite plates. The comparison studies of 

search performance between GA and PSO have not been 

carried out enough, and therefore in the present paper, the 

research on clarifying the difference in performance will be 

made for the purpose. 

 

3. Problem description for stacking sequence 

optimization of laminated composite plates 

Consider a laminated plate composed of orthotropic 

laminas as shown in Fig. 1.  The stress-strain equations in 

the k-th layer can be written as  
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where �̅�ij
(k) (i, j = 1, 2 and 6 ) are the elastic constraints of 

the k-th layer. The �̅� ij
(k) are determined by the coordinate 

transformation of the Hooke’s law for orthotropic plate Qij
(k) 

(i, j = 1, 2 and 6) given by  
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where EL and ET are the moduli of elasticity in the L and T 

directions, respectively, GLT is the shear modulus, and νLT 

and νTL are the Poisson ratios, as shown in Fig. 1. 

 

 

The maximum strain energy Umax and kinetic energy Tmax 

are derived as 
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where {κ} is curvature vectors defended by 
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 [D] is the bending stiffness matrix, A is area of the plate, ρ 

is material density of CFRP, h is thickness of plate, and W is 

bending deflection function.  To simplify the analysis, the 

normalized co-ordinate system O-ξη (-1 ≤ ξ, η ≤ 1) is defined 

in equation 

2
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where ξ and η are dimensionless coordinates, Ω is 

dimensionless frequency parameter, ω is the angular 

frequency, and D0 is reference plate stiffness represented by  

3
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Then, the deflection is expressed by 
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where Amn is unknown coefficients and Xm(ξ) and Yn(η) are 

the displacement functions which satisfy at least the kinetic 

boundary conditions on the edge. The bci (i = 1, 2, 3 and 4) 

is the boundary index which is used to satisfy the boundary 

conditions on each edge, and they are defined [34] as 

( )
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The stationary value is obtained by 

max max( )
0   ( 0,1,2,..., ( 1))

mn

U T
mn M

A

 −
= = −


 (11) 

The result of the minimization process Eq. (11) yields 

frequency equation in terms of unknown coefficient Amn as  
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   2 0K M− =　 　  (12) 

where [K] is the total stiffness matrix and [M] is the total 

mass matrix. Solving this eigenvalue equation gives the non-

dimensional frequency parameter Ω to be optimized. 

Figure 1. Laminated composite rectangular plate and coordinates 

 

4. Numerical experiments by GA and PSO 

4.1. Problem setting  

This study employs GA and PSO for searching nearly 

optimal solutions. The design variables, i.e., the fiber 

orientation angles of laminas are treated as continuous 

values. An 8-layer symmetric CFRP laminated plate shown 

in Fig. 1 is analyzed. The dimensions and material constants 

are as follows: 

𝑎 = 𝑏 = 150mm.  ℎ = 15mm 

(Note that the frequency parameter is normalized with h, and the 

value of a/h does not affect it) 

𝐸𝐿 = 138GPa, 𝐸𝑇 = 8.96GPa, 𝐺𝐿𝑇 = 7.1GPa 

ν𝐿𝑇 = 0.3, ρ = 1578kg/m3 

This study tries to find the fiber orientation angles of the 

laminas that composes the plate, which make the 

fundamental natural frequency maximum. 

The boundary conditions are assumed as CSFF, SSSS, 

CCFF, CSSS, where the sequence of four characters stands 

for the type of constraint on the left, lower, right, and upper 

edge, starting from the left edge. The letters F, S, and C 

denote Free, Simply supported, and Clamped, respectively. 

4.2.  GA 

Continuous values are to be stored in the genes on a 

chromosome. Roulette wheel selection is adopted. Linear 

scaling is applied so that the selection might be operated 

effectively. It scales the fitness values using the following 

equations 

 

 

 

 

(13) 

where 𝑓max and  𝑓avg are the maximum and average values 

of the original function, respectively.  In this study, the 

constant c is set to 2. The elite strategy is also applied. This 

study adopts two-point crossover and mutation operators. 

4.3.  PSO 

The position and velocity vectors of each particle in a 

swarm are defined as follows. 

 

 

 

 

(14) 

where 𝒙𝑖
𝑘  and 𝒗𝑖

𝑘  are n-dimensional position and velocity 

vectors of particle i at the k-th generation, respectively. 

pbesti and gbest are the position vectors where the objective 

function took the best value so far in the track of particle i, 

and of the whole particles, respectively. w, c1, and c2 are 

constants, r1, and r2 are uniform random numbers between 0 

and 1. 

 

5. Parameter setting 

The parameters of GA and PSO should be selected 

properly. This study employs DoE approach for determining 

them [35]. In both GA and PSO, four factors are chosen, then 

4 levels are set for each of them. Normally there are 44 

combinations of parameters. However with DoE approach, 

the number of experiments can be extremely reduced. The 

experiments for determining the parameters are planned to 

be executed according to the orthogonal array L16 (44) as 

shown in Table 1. It requires 16 types of experiments. 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1. Orthogonal array L16 (4
4) 

Experiment 
Level 

A B C D 

1 1 1 1 1 

2 1 2 2 2 

3 1 3 3 3 

4 1 4 4 4 

5 2 1 2 3 

6 2 2 1 4 

7 2 3 4 1 

8 2 4 3 2 

9 3 1 3 4 

10 3 2 4 3 

11 3 3 1 2 

12 3 4 2 1 

13 4 1 4 2 

14 4 2 3 1 

15 4 3 2 4 

16 4 4 1 3 
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5.1. Parameters of GA 

Population size, elite count, crossover rate, and mutation 

rate are defined as factors of DoE. Table 2 shows the factors 

and their levels. The maximum number of generations are 

chosen as the products of the population size and itself might 

be equal among all the levels. 

5.2.  Parameters of PSO 

Population size, w, c1, and c2 are defined as factors of 

DoE. The factors and their levels are shown in Table 3. The 

maximum number of generations are chosen as the products 

of  the population size might be equal among all the levels, 

same as the case of GA.  

 

6. Experimental results 

 

In accordance with the experimental plan in Table 1, 

every experiment was conducted 3 times. Tables 4 and 5 

present the fundamental frequencies derived from above 

trials by GA and PSO, respectively. Figures 2 and 3 show 

the values with each factor level. Consequently, the 

parameters of GA and PSO were selected as shown in Table 

6 and 7, respectively. The maximum number of generation 

is extended to 500 in both cases. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

With above parameters, the search experiments were 

carried out 3 times by each method. The calculation was 

executed under Java environment 1.8.0 using a laptop (Core 

2 Duo, T9300, 2.50GHz, 4GB RAM, Windows 10 64-bit). 

The results are shown in Table 8. “Converged” means the 

point when Ω1 reaches the final value.  

The transition of Ω1 in every trial is shown in Figs. 4-7.  

It turns out that the calculation time per generation is almost 

same between GA and PSO, although the final Ω1 values are 

slightly better derived from PSO than from GA. Furthermore 

the search with PSO converges faster than those of GA. The 

results indicate that the calculation is sufficient at least up to 

40th generation. In contrast, with GA, the generation 

considered sufficient for convergence cannot be estimated 

within 500th generation. 

7. Conclusions 

Search performance for optimizing the natural 

frequencies of fundamental mode was compared between 

GA with PSO. Appropriate parameters of GA and PSO were 

selected by DoE approach. It revealed the performance with 

PSO is better than with GA. In maximization, higher values 

of Ω1 were obtained by using PSO. Moreover, the results 

showed that all the solutions are converged until at least 40th 

generation. 
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Table 2. Factors and their levels of GA parameters 

Factor 
Level 

1 2 3 4 

A 

Population 

size 
20 40 80 160 

Max. 

generation 
200 100 50 25 

B Elite count 1 3 5 10 

C 
Crossover 

rate 
0.3 0.5 0.7 0.9 

D 
Mutation 

rate 
0.01 0.03 0.05 0.10 

Table 3. Factors and their levels of PSO parameters 

Factor 
Level 

1 2 3 4 

A 

Population 

size 
20 40 80 160 

Max. 

generation 
200 100 50 25 

B w 0.3 .05 0.7 0.9 

C c1 1.0 1.5 2.0 2.5 

D c2 1.0 1.5 2.0 2.5 
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Table 4.  Experimental results (GA) 

Experiment 
Level Results 

A B C D Trial 1 Trial 2 Trial 3 Mean 

1 1 1 1 1 16.363 16.292 16.340 16.332 

2 1 2 2 2 16.359 16.361 16.388 16.369 

3 1 3 3 3 16.389 16.295 16.327 16.337 

4 1 4 4 4 16.371 16.349 16.285 16.335 

5 2 1 2 3 16.342 16.376 16.379 16.366 

6 2 2 1 4 16.316 16.359 16.357 16.344 

7 2 3 4 1 16.401 16.412 16.330 16.381 

8 2 4 3 2 16.319 16.242 16.259 16.273 

9 3 1 3 4 16.371 16.298 16.315 16.328 

10 3 2 4 3 16.406 16.355 16.339 16.367 

11 3 3 1 2 16.319 16.366 16.366 16.350 

12 3 4 2 1 16.353 16.369 16.363 16.362 

13 4 1 4 2 16.394 16.335 16.384 16.371 

14 4 2 3 1 16.396 16.371 16.360 16.376 

15 4 3 2 4 16.333 16.385 16.352 16.357 

16 4 4 1 3 16.278 16.325 16.295 16.299 
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Figure 2.  Main effects plot (GA) 
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Table 5.  Experimental results (PSO) 

Experiment 
Level Results 

A B C D Trial 1 Trial 2 Trial 3 Mean 

1 1 1 1 1 16.410 16.308 16.410 16.376 

2 1 2 2 2 16.415 16.415 16.415 16.415 

3 1 3 3 3 16.344 16.331 16.368 16.348 

4 1 4 4 4 16.278 16.242 16.187 16.236 

5 2 1 2 3 16.415 16.415 16.415 16.415 

6 2 2 1 4 16.415 16.415 16.415 16.415 

7 2 3 4 1 16.381 16.307 16.375 16.354 

8 2 4 3 2 16.338 16.269 16.301 16.303 

9 3 1 3 4 16.393 16.404 16.314 16.370 

10 3 2 4 3 16.326 16.393 16.314 16.344 

11 3 3 1 2 16.413 16.412 16.411 16.412 

12 3 4 2 1 16.291 16.332 16.363 16.329 

13 4 1 4 2 16.376 16.402 16.378 16.385 

14 4 2 3 1 16.389 16.336 16.359 16.361 

15 4 3 2 4 16.310 16.364 16.389 16.354 

16 4 4 1 3 16.329 16.373 16.367 16.356 
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Figure 3.  Main effects plot (PSO) 
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Table 8.  Maximized Ω1, stacking sequence, and elapsed time 

(a) CSFF 

 
Trial 

Final (500th generation) Converged 
Stacking sequence 

Ω1 (Mean) Time(s) (Mean) Generation (Mean) Time(s) (Mean) 

GA 

1 16.399 

(16.401) 

16898 

(16367) 

488 

(260) 

16494 

(8671) 

[ 21.1/-45.4/ 18.7/-41.7]S 

2 16.403 16261 186 6079 [ 22.6/-42.5/ 17.5/ 19.3]S 
3 16.402 15941 107 3439 [ 21.2/-45.9/ 20.3/  5.6]S 

PSO 

1 16.410 

(16.413) 

16757 

(16877) 

20 

(20) 
705 

(722) 

[ 21.9/-44.0/ 21.9/-44.0]S 
2 16.415 17236 22 794 [ 21.5/-44.4/ 21.5/ 21.5]S 
3 16.415 16638 19 668 [ 21.5/-44.4/ 21.5/ 21.5]S 

(b) SSSS 

 
Trial 

Final (500th generation) Converged 
Stacking sequence 

Ω1 (Mean) Time(s) (Mean) Generation (Mean) Time(s) (Mean) 

GA 

1 56.290 

(56.232) 

35198 

(35182) 

379 

(225) 

26698 

(15887) 

[-43.8/ 44.1/ 42.5/ 49.3]S 

2 56.224 35266 61 4371 [ 48.1/-43.9/-42.7/-50.5]S 

3 56.182 35083 236 16592 [ 45.4/-45.7/-40.4/-22.6]S 

PSO 

1 56.319 

(56.319) 

36084 

(35513) 

34 

(35) 
2570 

(2605) 

[-45.0/ 45.0/ 45.0/ 45.0]S 

2 56.319 35331 37 2790 [-45.0/ 45.0/ 45.0/ 45.0]S 

3 56.319 35125 34 2456 [ 45.0/-45.0/-45.0/-45.0]S 

(c) CCFF 

 
Trial 

Final (500th generation) Converged 
Stacking sequence 

Ω1 (Mean) Time(s) (Mean) Generation (Mean) Time(s) (Mean) 

GA 

1 19.025 

(19.028) 

22510 

(22489) 

18 

(192) 

850 

(8583) 

[ 48.0/-45.5/ 43.3/  2.3]S 

2 19.028 22756 104 4773 [ 45.3/-46.6/ 37.4/ -5.5]S 

3 19.032 22201 453 20125 [ 45.4/-45.8/ 44.5/-57.9]S 

PSO 

1 19.035 

(19.033) 

22789 

(22712) 

15 

(14) 
729 

(668) 

[ 45.0/-45.0/ 45.0/-45.0]S 

2 19.028 22480 12 586 [ 44.6/-44.4/ 44.6/ 90.0]S 

3 19.035 22868 14 688 [ 45.0/-45.0/ 45.0/-45.0]S 

(d) CSSS 

 
Trial 

Final (500th generation) Converged 
Stacking sequence 

Ω1 (Mean) Time(s) (Mean) Generation (Mean) Time(s) (Mean) 

GA 

1 66.710 

(66.725) 

68529 

(67356) 

364 

(378) 

49910 

(50929) 

[-28.1/ 31.2/ 35.7/ 10.6]S 

2 66.709 66771 483 64505 [ 28.2/-30.0/-31.9/-48.8]S 

3 66.756 66767 286 38371 [-28.5/ 31.5/ 33.2/ 26.0]S 

PSO 

1 66.765 

(66.765) 

66917 

(68170) 

21 

(21) 
2940 

(2948) 

[ 27.7/-31.8/-31.8/-31.8]S 

2 66.765 68934 20 2888 [-27.7/ 31.8/ 31.8/ 31.8]S 

3 66.765 68659 21 3015 [-27.7/ 31.8/ 31.8/ 31.8]S 

Table 6.  Selected parameters of GA 

Population 

Size 

Maximum 

generation 

Elite 

count 

Crossover 

rate 

Mutation 

rate 

80 500 3 0.5 0.01 

Table 7.  Selected parameters of PSO 

Population 

Size 

Maximum 

generation 

Elite 

count 

Crossover 

rate 

Mutation 

rate 

80 500 3 0.5 0.01 
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(a) GA (b) PSO 

Figure 4.  Transition of Ω1 with generation for CSFF 

(a) GA (b) PSO 

Figure 5.  Transition of Ω1 with generation for SSSS 

(a) GA (b) PSO 

Figure 6.  Transition of Ω1 with generation for CCFF 

(b) GA (c) PSO 

Figure 7.  Transition of Ω1 with generation for CSSS 
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